Изобретение относится к области аналитической химии платиновых металлов, в частности к методам разделения и концентрирования, и может быть использовано при разделении платины и родия в сульфатных свежеприготовленных и выдержанных растворах сорбционным методом с использованием сильноосновного анионита.
Известен способ извлечения благородных металлов из растворов сорбцией [патент РФ №2201983, C22B 11/00, C22B 3/24, опубл. 10.04.2003], включающий сорбционное извлечение благородных металлов органическим сорбентом - 2-(1,3,5-дитиазин-5-ил)уксусной кислоты в широком интервале температур (90-100°C) и кислотности среды (pH 1-14) в течение 40-60 мин, включающий стадии отфильтровывания, высушивания и озоления сорбента-концентрата. При этом зола представляет собой извлекаемый металл или сумму извлекаемых металлов (в случае серебра - оксид серебра).
К недостаткам этого способа относится использование только свежеприготовленных растворов, а также невозможность повторного использования ионитов ввиду их сжигания. Следовательно, другим существенным недостатком известного способа является экологическая опасность.
Существует также способ извлечения благородных металлов из кислых сульфатных растворов [патент РФ №2067125, C22B 3/24, C22B 11/00, опубл. 27.09.1996], включающий пропускание исходного раствора через слой углеродного адсорбента, предварительно подвергнутого деминерализации методом кислотной обработки и термообработке в инертной атмосфере, обработку угля азотной кислотой, последующую его промывку, сушку и термообработку для повторного использования при извлечении металлов платиновой группы.
Недостатками этого способа являются низкая механическая прочность углеродных сорбентов и невозможность их многократного (более 10 раз) использования.
Наиболее близким техническим решением, выбранным в качестве прототипа, является способ извлечения платиновых металлов из бедных сульфатных растворов [патент РФ №2323986, C22B 11/00, C22B 3/24, опубл. 10.05.2008], включающий одновременный перевод платиновых металлов в активносорбируемую форму хлорированием и их извлечение. В качестве сорбентов используют ионообменные смолы на основе сополимера стирола и дивинилбензола: сильноосновной анионит гелиевой структуры Россион-5, содержащий бензилтриметиламмониевые группы, или слабоосновную смолу макропористой структуры Россион-10, содержащую первичные, вторичные и третичные аминогруппы.
Недостатками данного способа являются использование высоких температур (90°C), длительность и трудоемкость процесса (постоянное перемешивание в течение четырех часов, пропускание токсичной хлорвоздушной смеси в течение 30 минут).
Техническим результатом изобретения является упрощение и удешевление как способа перевода сульфатных форм платиновых металлов в хлоридные, так и процесса их извлечения и разделения в свежеприготовленных и в выдержанных растворах.
Технический результат достигается тем, что в способе извлечения и разделения платины и родия в сульфатных растворах, включающем перевод платиновых металлов в активносорбируемую форму, сорбцию на сильноосновном анионите новым является то, что предварительно свежеприготовленные и выдержанные в течение трех месяцев сульфатные растворы платины и родия переводят в сульфатно-хлоридные путем добавления к ним хлороводородной кислоты, сорбцию осуществляют в динамических условиях из полученных растворов на анионите Purolite A-500, содержащем в качестве функциональной группы четвертичное аммонийное основание, а их десорбцию осуществляют в два этапа: на первом этапе пропускают через сорбент раствор 2М NaNO3 для извлечения платины и на втором этапе раствор 2 М HCl для извлечения родия. Также новым является то, что анионит после десорбции используют для повторной сорбции платиновых металлов без дополнительной регенерации.
Сущность способа заключается в следующем. На первом этапе происходит активация свежеприготовленных и выдержанных в течение трех месяцев сульфатных растворов без дополнительных затрат путем добавления к ним 0,01-2,0 М хлороводородной кислоты так, чтобы соотношение концентраций HCl и H2SO4 составляло 1:1. При этом в полученных системах кинетически инертные сульфатные комплексы платиновых металлов, такие как [Pt2(H2O)2(SO4)4]2-, [Rh(H2O)2(SO4)]-, [Rh(OH)(H2O)(SO4)2]2- и другие, которые вызывают значительное осложнение при извлечении этих металлов, переходят в более лабильные хлоридные формы, о чем свидетельствуют электронные спектры поглощения платиновых металлов, приведенных на фиг.1. Из них видно, что максимумы поглощения спектров хлоридных и сульфатно-хлоридных растворов идентичны, то есть в таких системах платина и родий находятся в хлоридных комплексах, таких как [PtCl6]2-, [RhCl6]3-, [Pt(OH)Cl5]2-, [Pt(OH)6]2-, [Rh(H2O)2Cl4]- и других. Далее на втором этапе проводится извлечение платиновых металлов из приготовленных растворов на сильноосновном анионите Purolite A-500, содержащем в качестве функциональной группы четвертичное аммонийное основание, обладающем высокой обменной емкостью по платине и родию. Сорбционные характеристики ионита в зависимости от кислотности среды практически не изменяются при уменьшении концентрации кислот. Для полного извлечения благородных металлов из растворов эксперимент проводится в динамических условиях. При выдерживании растворов в течение трех месяцев сорбционные параметры несколько ухудшаются, однако остаются на высоком уровне, что имеет огромное значение для промышленности. Третий этап включает десорбцию благородных металлов с анионита, которую осуществляют растворами 2 М NaNO3, а затем 2 М HCl. Анионит после десорбции используют для повторной сорбции благородных металлов в описываемом способе.
Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».
Изобретение поясняется чертежом. На фиг.1 представлены спектры поглощения хлоридных (1, 3) и сульфатно-хлоридных (2, 4) растворов платины и родия при совместном присутствии, полученные из сульфатных растворов разного времени выдерживания (свежеприготовленные растворы (1, 2) и выдержанные в течение трех месяцев (3, 4)).
Заявляемый способ осуществляется следующим образом.
Переводят платину и родий в активносорбируемую форму путем введения в свежеприготовленный и выдержанный в течение трех месяцев сульфатный раствор хлороводородной кислоты так, чтобы получились растворы следующего состава: концентрации H2SO4 и HCl 0,01-2,0 моль/л (молярное соотношение 1:1), концентрация по платине 2,5·10-4 моль/л (49 мг/л), по родию 2,5·10-4 моль/л (26 мг/л). Затем предварительно набухший анионит Purolite A-500 в хлоридной форме массой 2,3 г помещают в хроматографическую колонку и пропускают через него 50 мл полученного сульфатно-хлоридного раствора со скоростью 1,5 мл/мин. После насыщения сорбента ионами платиновых металлов пропускают 2 М раствор NaNO3. При этом платина переходит в раствор, а родий остается в анионите. Далее сорбент промывают 100 мл воды и пропускают через него 2 М раствор HCl. После раздельной десорбции платину и родий можно использовать для дальнейшей работы либо в виде растворов, либо можно перевести их в металлическую форму путем электролиза. Анионит после десорбции используют для повторной сорбции благородных металлов в описываемом способе. Характеристики предлагаемого способа представлены в табл.1, где C - концентрации платины, родия, серной и хлороводородной кислоты в контактирующих растворах (моль/л), R - процент сорбции или десорбции платиновых металлов (%).
Способ иллюстрируется следующими примерами.
Пример 1. Переводят платину и родий в активносорбируемую форму путем введения в свежеприготовленный сульфатный раствор хлороводородной кислоты так, чтобы получился раствор следующего состава: концентрации H2SO4 и HCl 0,01 моль/л (молярное соотношение 1:1), концентрация по платине 2,5·10-4 моль/л (49 мг/л), по родию 2,5·10-4 моль/л (26 мг/л). Затем предварительно набухший анионит Purolite A-500 в хлоридной форме массой 2,3 г помещают в хроматографическую колонку и пропускают через него 50 мл полученного сульфатно-хлоридного раствора со скоростью 1,5 мл/мин (табл.1). После насыщения сорбента ионами платиновых металлов пропускают 2 М раствор NaNO3 для извлечения платины. Затем сорбент промывают 100 мл воды и пропускают через него 2 М раствор HCl для извлечения родия.
Пример 2. Переводят платину и родий в активносорбируемую форму путем введения в свежеприготовленный сульфатный раствор хлороводородной кислоты так, чтобы получился раствор следующего состава: концентрации H2SO4 и HCl 2,0 моль/л (молярное соотношение 1:1), концентрация по платине 2,5·10-4 моль/л (49 мг/л), по родию 2,5·10-4 моль/л (26 мг/л). Затем предварительно набухший анионит Purolite A-500 в хлоридной форме массой 2,3 г помещают в хроматографическую колонку и пропускают через него 50 мл полученного сульфатно-хлоридного раствора со скоростью 1,5 мл/мин (табл.1). После насыщения сорбента ионами платиновых металлов пропускают 2 М раствор NaNO3 для извлечения платины. Затем сорбент промывают 100 мл воды и пропускают через него 2 М раствор НСl для извлечения родия.
Пример 3. Переводят платину и родий в активносорбируемую форму путем введения в выдержанный в течение трех месяцев сульфатный раствор хлороводородной кислоты так, чтобы получился раствор следующего состава: концентрации H2SO4 и HCl 0,01 моль/л (молярное соотношение 1:1), концентрация по платине 2,5·10-4 моль/л (49 мг/л), по родию 2,5·10-4 моль/л (26 мг/л). Затем предварительно набухший анионит Purolite А-500 в хлоридной форме массой 2,3 г помещают в хроматографическую колонку и пропускают через него 50 мл полученного сульфатно-хлоридного раствора со скоростью 1,5 мл/мин (табл.1). После насыщения сорбента ионами платиновых металлов пропускают 2 М раствор NaNO3 для извлечения платины. Затем сорбент промывают 100 мл воды и пропускают через него 2 М раствор НСl для извлечения родия.
Использование заявляемого изобретения открывает возможность раздельного получения родия и платины из сульфатных растворов отработанных катализаторов. Для процессов сорбции и десорбции применяются дешевые, нетоксичные растворы нитрата натрия и хлороводородной кислоты, необходимые в малых количествах, что позволяет разработать экологически безопасные технологии извлечения платиновых металлов и избежать дополнительной операции регенерации анионита. Способ позволяет извлекать платиновые металлы более 99%.
Таким образом, в результате использования заявляемого технического решения упрощается и удешевляется как перевод платиновых металлов в активносорбируемую форму, без дополнительных затрат, так и сам процесс сорбции, нет необходимости проводить ее при температуре 90°C и пропускать через раствор хлоровоздушную смесь. Также появляется возможность проведения извлечения и разделения не только в свежеприготовленных, но и в выдержанных растворах, которые характеризуются наличием кинетически инертных форм аква- и гидроксокомплексов Pt и Rh и являются трудносорбируемыми соединениями.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV), РОДИЯ (III) И НИКЕЛЯ (II) В ХЛОРИДНЫХ РАСТВОРАХ | 2013 |
|
RU2527830C1 |
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И РОДИЯ (III) В СОЛЯНОКИСЛЫХ ВОДНЫХ РАСТВОРАХ | 2010 |
|
RU2439175C1 |
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И ЖЕЛЕЗА (III) В СОЛЯНОКИСЛЫХ РАСТВОРАХ | 2015 |
|
RU2610185C2 |
Способ извлечения родия из многокомпонентных хлоридных растворов | 2018 |
|
RU2682907C1 |
СПОСОБ ОТДЕЛЕНИЯ ПЛАТИНЫ (II, IV) И ПАЛЛАДИЯ (II) ОТ СЕРЕБРА (I), ЖЕЛЕЗА (III) И МЕДИ (II) В СОЛЯНОКИСЛЫХ РАСТВОРАХ | 2019 |
|
RU2694855C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНОВЫХ МЕТАЛЛОВ ИЗ БЕДНЫХ СУЛЬФАТНЫХ РАСТВОРОВ | 2006 |
|
RU2323986C1 |
Способ селективного извлечения ионов платины из хлоридных растворов | 2019 |
|
RU2703011C1 |
СПОСОБ РАЗДЕЛЕНИЯ ПЛАТИНЫ (II, IV), МЕДИ (II) И ЦИНКА (II) В СОЛЯНОКИСЛЫХ РАСТВОРАХ | 2016 |
|
RU2637547C1 |
СПОСОБ СОРБЦИОННОГО ИЗВЛЕЧЕНИЯ И РАЗДЕЛЕНИЯ РОДИЯ И РУТЕНИЯ | 2014 |
|
RU2573853C2 |
Способ извлечения платины, палладия и золота из технологических растворов | 2021 |
|
RU2778081C1 |
Изобретение относится к способу извлечения и разделения платины и родия в сульфатных растворах. Способ включает перевод платиновых металлов в активносорбируемую сульфатно-хлоридную форму и сорбцию на сильноосновном анионите. При этом переводу платиновых металлов в активносорбируемую форму подвергают предварительно свежеприготовленные и выдержанные в течение трех месяцев сульфатные растворы платины и родия путем добавления к ним хлороводородной кислоты. Сорбцию осуществляют в динамических условиях из полученных растворов на анионите Purolite A-500, содержащем в качестве функциональной группы четвертичное аммонийное основание, с последующей десорбцией в два этапа. На первом этапе пропускают через анионит раствор 2М NaNO3 для извлечения платины, а на втором этапе - раствор 2 М HCl для извлечения родия. Способ не требует дополнительной регенерации сорбента и является экологически безопасным. Техническим результатом изобретения является упрощение и удешевление как способа перевода сульфатных форм платиновых металлов в хлоридные, так и процесса извлечения и разделения платины и родия в свежеприготовленных и в выдержанных растворах. 1 з.п. ф-лы, 1 ил., 1 табл., 3 пр.
1. Способ извлечения и разделения платины и родия в сульфатных растворах, включающий перевод платиновых металлов в активносорбируемую сульфатно-хлоридную форму, сорбцию на сильноосновном анионите, отличающийся тем, что переводу платиновых металлов в активносорбируемую форму подвергают предварительно свежеприготовленные и выдержанные в течение трех месяцев сульфатные растворы платины и родия путем добавления к ним хлороводородной кислоты, при этом сорбцию осуществляют в динамических условиях из полученных растворов на анионите Purolite A-500, содержащем в качестве функциональной группы четвертичное аммонийное основание, с последующей десорбцией в два этапа, причем на первом этапе пропускают через анионит раствор 2М NaNO3 для извлечения платины, а на втором этапе - раствор 2 М HCl для извлечения родия.
2. Способ по п.1, отличающийся тем, что анионит после десорбции используют для повторной сорбции платиновых металлов без дополнительной регенерации.
СПОСОБ ИЗВЛЕЧЕНИЯ ПЛАТИНОВЫХ МЕТАЛЛОВ ИЗ БЕДНЫХ СУЛЬФАТНЫХ РАСТВОРОВ | 2006 |
|
RU2323986C1 |
СПОСОБ СОВМЕСТНОГО ОТДЕЛЕНИЯ МЕТАЛЛОВ ПЛАТИНОВОЙ ГРУППЫ | 2004 |
|
RU2353684C2 |
Способ концентрирования благородных металлов из сульфатных растворов | 1979 |
|
SU854883A1 |
Устройство для фиксации длинномерных заготовок на рабочей позиции обрабатывающей машины | 1983 |
|
SU1074635A1 |
US 5879644 A, 09.03.1999. |
Авторы
Даты
2013-04-20—Публикация
2012-01-11—Подача