УСТРОЙСТВО ДЛЯ ГАЗОДИНАМИЧЕСКОГО НАПЫЛЕНИЯ ПОКРЫТИЙ ИЗ ПОРОШКОВЫХ МАТЕРИАЛОВ Российский патент 2013 года по МПК C23C24/04 

Описание патента на изобретение RU2479671C2

Изобретение относится к устройствам для газодинамического напыления покрытий из порошковых материалов и может быть использовано в машиностроении и других отраслях для получения качественных покрытий при ремонте и изготовлении изделий.

Из уровня техники известно устройство для газодинамического напыления покрытий из порошковых материалов (1), содержащее дозатор порошка, нагреватель газа, сверхзвуковое сопло и блок контроля и управления электронагревателем с электронным заданием и поддержанием температуры.

Недостатком данного устройства является то, что часть энергии, используемой для нагрева газа носителя, расходуется впустую, нагревая корпус и увеличивая опасность работы с ним персонала.

Из уровня техники известно устройство для газодинамического напыления покрытий из порошковых материалов (2), содержащее источник газа носителя, порошковые питатели, блок напыления, включающий электронагреватель газа носителя, расположенный в кожухе и соединенный газопроводом с источником газа носителя, и сверхзвуковое сопло, а также блок контроля и управления электронагревателем. Данный аналог наиболее близкий т.е. - прототип.

Недостатком данного устройства является то, что часть газа носителя расходуется впустую, используется только для охлаждения корпуса, а также тепловая энергия, выделяемая блоком контроля и управления электронагревателем не используется, кроме того, не обеспечивается точность стабилизации и контроля температуры.

Техническая задача, на которую направлено данное изобретение, - создание устройства для газодинамического напыления покрытий из порошковых материалов, имеющего низкое энергопотребление и обеспечивающего высокое качество покрытий за счет стабилизации и контроля температуры.

Данная техническая задача решается тем, что устройство для газодинамического напыления покрытий из порошковых материалов содержит источник газа-носителя, порошковые питатели, блок напыления, включающий электронагреватель газа-носителя, расположенный в кожухе и соединенный газопроводом с источником газа-носителя, и ускоряющее сопло, а также микропроцессорный блок контроля и управления электронагревателем. Отличием является то, что в кожухе выполнены лабиринтные каналы для газа-носителя, охлаждающего наружные стенки кожуха и используемого в дальнейшем для разгона частиц порошкового материала, силовой (электронный) элемент микропроцессорного блока расположен непосредственно в блоке напыления и охлаждается потоком газа-носителя, причем управление нагревом газа-носителя осуществляется по пропорционально-интегрально-дифференциальному (ПИД) закону микропроцессорным блоком, установленным непосредственно на напылительном блоке, и имеющем возможность настройки и сохранения во внутреней памяти ПИД коэффициентов для различных режимов напыления, а также порт связи с ЭВМ для оперативного программного изменения режимов напыления и зписи значений температуры газа-носителя во время процесса напыления.

Таким образом, выполнение в кожухе лабиринтных перегородок для газа-носителя позволяет охлаждать наружные стенки кожуха и в дальнейшем поток газа-носителя не сбрасывать в атмосферу, а полностью использовать для разгона частиц порошкового материала. Кроме того, газ-носитель используется также и для охлаждения силового (электронного) элемента микропроцессорного блока, находящегося в напылительном блоке, при этом охлаждая вышеуказанный элемент, а также стенки кожуха, он нагревается, и этим снижается энергопотребление устройства.

Управление нагревом газа-носителя по пропорционально-интегрально-дифференциальному (ПИД) закону микропроцессорным блоком позволяет стабилизировать температуру и производить ее контроль с достаточно высокой точностью, а расположение микропроцессорного блока в корпусе напылителя позволяет оперативно контролировать и изменять режимы напыления.

Данное изобретение поясняется чертежом, где на фиг.1 представлена блок-схема устройства для газодинамического напыления покрытий из порошковых материалов.

Устройство для газодинамического напыления покрытий из порошковых материалов состоит из источника газа-носителя 1, порошковых питателей 2, микропроцессорного блока 3, силового регулирующего элемента микропроцессорного блока 4, расположенного на распределительной плите-радиаторе 5. В кожухе 6 расположены лабиринтные каналы 7 для газа-носителя и нагревательный элемент 8. Кожух 6 выполнен с лабиринтными каналами 7 и имеет сообщение через теплоизолированное отверстие 9 с устройством смешения 10, соединенное с ускоряющим соплом 11.

Устройство для газодинамического напыления покрытий из порошковых материалов работает следующим образом. Газ-носитель поступает в распределительную плиту-радиатор 5, на которой закреплен силовой регулирующий элемент микропроцессорного блока 4. Силовой регулирующий элемент микропроцессорного блока 4 охлаждается газом-носителем, который сам при этом нагревается. Далее газ-носитель проходит по лабиринтному каналу 7, образованному внутренними перегородками 12 и наружными стенками кожуха 6, и охлаждает их, опять при этом нагреваясь. Затем газ-носитель проходит далее, пока не попадет в канал, образованный внутренними перегородками 13 и нагревательным элементом 8, где нагревается до температуры, заданной микропроцессорным блоком 3. Далее газ-носитель через теплоизолированное отверстие 10 поступает в устройство смешения 11, из которого вместе с напыляемым порошком разгоняется в ускоряющем сопле 12. Управление нагревом газа-носителя осуществляется по пропорционально-интегрально-дифференциальному (ПИД) закону микропроцессорным блоком 3, установленным непосредственно на напылительном блоке. Такое регулирующее воздействие используется в пропорционально-интегрально-дифференциальных (ПИД) регуляторах, которые воздействуют на объект пропорционально отклонению s регулируемой величины, интегралу от этого отклонения и скорости изменения регулируемой величины

где µ - величина регулирующего воздействия;

k - пропорциональный коэффициент;

ε - отклонение регулируемой величины;

Q1 - постоянная интегрирования регулятора (время изодрома);

Q2 - постоянная дифференцирования;

dt - период квантования по времени;

t - время.

и хорошо подходят для систем регулирования температуры.

Таким образом, предложенное устройство для газодинамического напыления покрытий из порошковых материалов использует для охлаждения наружных стенок и силового регулирующего элемента газ-носитель, который в дальнейшем полностью используется для разгона частиц. Охлаждая вышеуказанные устройства, газ-носитель при этом частично нагревается, за счет чего и уменьшается энергопотребление устройства. Регулирование температуры по пропорционально-интегрально-дифференциальному (ПИД) закону позволяет стабилизировать температуру газа-носителя с большой точностью, что позволяет получать высокое качество покрытий.

Библиографические источники информации

1. Патент №2190695 РФ, публ. 10.10.2002 г.

2. Патент №2257423 РФ, публ. 10.03.2005 г. - прототип

Похожие патенты RU2479671C2

название год авторы номер документа
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ ИЗ ПОЛИМЕРНЫХ ПОРОШКОВЫХ КОМПОЗИЦИЙ ЭЛЕКТРОГАЗОПЛАМЕННЫМ СПОСОБОМ 2015
  • Тукбаев Эрнст Ерусланович
  • Галимов Энгель Рафикович
  • Федяев Владимир Леонидович
  • Галимова Назира Яхиевна
  • Гимранов Ильдар Рашатович
  • Тахавиев Марат Сафаутдинович
  • Фазлыев Ленар Равилевич
  • Шарафутдинов Руслан Фаритович
  • Шарафутдинова Эльмира Энгелевна
RU2600643C2
Портативное устройство для газодинамического напыления покрытий 2017
  • Орлов Владислав Константинович
  • Титов Александр Олегович
  • Школин Сергей Анатольевич
  • Градобоев Александр Юрьевич
  • Лемешкина Елена Леонидовна
  • Байгушев Алексей Борисович
  • Юрьев Юрий Алексеевич
  • Нестеренко Юрий Александрович
RU2681858C2
ПОРТАТИВНОЕ УСТРОЙСТВО ДЛЯ ГАЗОДИНАМИЧЕСКОГО НАПЫЛЕНИЯ ПОКРЫТИЙ 2003
  • Каширин А.И.
  • Клюев О.Ф.
  • Буздыгар Т.В.
  • Шкодкин А.В.
RU2257423C2
Портативное устройство для газодинамического напыления покрытий 2017
  • Орлов Владислав Константинович
  • Титов Александр Олегович
  • Школин Сергей Анатольевич
  • Градобоев Александр Юрьевич
  • Лемешкина Елена Леонидовна
  • Байгушев Алексей Борисович
  • Юрьев Юрий Алексеевич
  • Нестеренко Юрий Александрович
RU2681675C2
УСТАНОВКА ДЛЯ ГАЗОДИНАМИЧЕСКОГО НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ ПОРОШКОВЫХ МАТЕРИАЛОВ 2000
  • Дикун Ю.В.
RU2181390C2
УСТРОЙСТВО ДЛЯ ГАЗОДИНАМИЧЕСКОГО НАНЕСЕНИЯ ПОКРЫТИЙ ИЗ ПОРОШКОВЫХ МАТЕРИАЛОВ 2006
  • Столяров Олег Иванович
  • Михеев Владимир Иванович
RU2339460C2
СПОСОБ И УСТРОЙСТВО НАНЕСЕНИЯ МЕТОК ДЛЯ МАРКИРОВКИ ПОВЕРХНОСТИ ГАЗОДИНАМИЧЕСКИМ МЕТОДОМ 2006
  • Дикун Юрий Вениаминович
  • Федотов Владимир Игоревич
  • Царегородцев Сергей Станиславович
RU2340705C2
СПОСОБ ГАЗОДИНАМИЧЕСКОЙ ОБРАБОТКИ ПОВЕРХНОСТИ ПОРОШКОВЫМ МАТЕРИАЛОМ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2008
  • Косарев Владимир Федорович
  • Клинков Сергей Владимирович
  • Бернар Лаже
  • Филипп Бертран
  • Игорь Смуров
RU2399694C1
УСТРОЙСТВО ГАЗОДИНАМИЧЕСКОГО НАПЫЛЕНИЯ ПОРОШКОВЫХ МАТЕРИАЛОВ 2006
  • Косарев Владимир Федорович
  • Клинков Сергей Владимирович
  • Лаврушин Виктор Владимирович
  • Сова Алексей Александрович
RU2334827C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ И ПОКРЫТИЙ ИЗ ПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Дикун Ю.В.
RU2181788C1

Иллюстрации к изобретению RU 2 479 671 C2

Реферат патента 2013 года УСТРОЙСТВО ДЛЯ ГАЗОДИНАМИЧЕСКОГО НАПЫЛЕНИЯ ПОКРЫТИЙ ИЗ ПОРОШКОВЫХ МАТЕРИАЛОВ

Изобретение относится к устройствам для газодинамического напыления покрытий из порошковых материалов и может быть использовано в машиностроении и других отраслях для получения качественных покрытий при ремонте и изготовлении изделий. Устройство содержит порошковые питатели, источник газа-носителя, используемый для разгона частиц порошкового материала, блок напыления, включающий кожух, расположенный в кожухе электронагреватель газа-носителя, соединенный газопроводом с источником газа-носителя, ускоряющее сопло, микропроцессорный блок контроля и управления заданной температурой газа-носителя с регулирующим элементом и устройство смешения порошкового материала и газа-носителя, соединенное с ускоряющим соплом. Кожух блока напыления выполнен с внутренними перегородками с образованием между ними и наружными стенками кожуха лабиринтных каналов для прохода потока газа-носителя с его нагревом до заданной микропроцессорным блоком температуры. Устройство имеет низкое энергопотребление и обеспечивает высокое качество покрытий за счет стабилизации и контроля температуры. 1 ил.

Формула изобретения RU 2 479 671 C2

Устройство для газодинамического напыления покрытий из порошковых материалов, содержащее порошковые питатели, источник газа-носителя, используемый для разгона частиц порошкового материала, блок напыления, включающий кожух, расположенный в кожухе электронагреватель газа-носителя, соединенный газопроводом с источником газа-носителя, ускоряющее сопло, микропроцессорный блок контроля и управления заданной температурой газа-носителя с регулирующим элементом и устройство смешения порошкового материала и газа-носителя, соединенное с ускоряющим соплом, отличающееся тем, что кожух блока напыления выполнен с внутренними перегородками с образованием между ними и наружными стенками кожуха лабиринтных каналов для прохода газа-носителя с его нагревом до заданной микропроцессорным блоком температуры.

Документы, цитированные в отчете о поиске Патент 2013 года RU2479671C2

ПОРТАТИВНОЕ УСТРОЙСТВО ДЛЯ ГАЗОДИНАМИЧЕСКОГО НАПЫЛЕНИЯ ПОКРЫТИЙ 2003
  • Каширин А.И.
  • Клюев О.Ф.
  • Буздыгар Т.В.
  • Шкодкин А.В.
RU2257423C2
УСТРОЙСТВО ГАЗОДИНАМИЧЕСКОГО НАПЫЛЕНИЯ ПОРОШКОВЫХ МАТЕРИАЛОВ 2000
  • Алхимов А.П.
  • Косарев В.Ф.
  • Алхимов О.А.
  • Лаврушин В.В.
RU2190695C2
СПОСОБ ГАЗОДИНАМИЧЕСКОГО НАНЕСЕНИЯ ПОКРЫТИЙ И СОПЛОВОЙ БЛОК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Шкодкин А.В.
RU2201472C2
Устройство для охлаждения радиоэлементов 1986
  • Явношан Феликс Владимирович
  • Жаров Алексей Николаевич
SU1403396A1
Способ получения декоративного шпона лиственницы 1989
  • Ермолович Александр Геннадьевич
  • Гненный Анатолий Павлович
  • Исаев Александр Яковлевич
SU1659195A1

RU 2 479 671 C2

Авторы

Юркевич Сергей Николаевич

Яснов Виктор Владимирович

Даты

2013-04-20Публикация

2010-05-26Подача