Изобретение относится к цветной металлургии, а именно к комплексной переработке красных шламов глиноземного производства.
Известен способ переработки красных шламов глиноземного производства, включающий восстановительный обжиг красного шлама в присутствии восстановителя (уголь или коксик) при температуре 700-800°C, магнитную сепарацию при напряженности магнитного поля 80-100 кА/м обожженного материала с получением железосодержащего концентрата и алюмокальциевого продукта, из которого далее получают скандий содержащий концентрат известными методами (Сабирзянов Н.А., Яценко С.П. - Гидрохимические способы комплексной переработки боксита - Екатеринбург, УрО РАН, 2006 г., стр. 217-218).
Недостатки известного способа прежде всего связаны со сложностью и многостадийностью технологического процесса комплексной переработки красных шламов, обусловленных прежде всего применением на первоначальной стадии высокотемпературного обжига.
Известен способ извлечения редкоземельных металлов, скандия и иттрия из красных шламов глиноземного производства, заключающийся в том, что красные шламы в виде пульпы с содержанием твердого до 50% разделяют по плотности в центробежном поле при ускорении 40-100 м/с, расходе сжижающей воды 3-10 л/мин, на «тяжелую» и «легкую» фракцию, из которой далее методом магнитной сепарации при напряженности магнитного поля 400-1600 кА/м извлекают редкоземельный концентрат (патент РФ 2147622, C22B 59/00, C22B 7/00).
К недостаткам способа относятся следующие:
- недостаточно высокий выход железосодержащего концентрата, имеющего хотя и высокое содержание Fe2O3, равное 65-70%, но выход составляет лишь 8-10%;
- невысокое извлечение оксида скандия в концентрат (содержание ~0,030% или 300 г/т), составляющее ~10%.
Наиболее близким по технологической сущности, совокупности признаков и достигаемому техническому результату является способ переработки красных шламов глиноземного производства, включающий извлечение и концентрирование ценных компонентов методами классификации и магнитной сепарации (а.с. СССР 1715874, C22B 59/00, C01F 7/02).
Способ заключается в следующем.
Исходную шламовую пульпу подвергают классификации по классу частиц размером 40-60 мкм, пульпу частиц размером менее 40-60 мкм (в среднем, 50 мкм) подкисляют минеральными кислотами (HCl или H2SO4) до значений pH 1,5-4,0, выдерживают при полученных значениях pH и перемешивании 10-15 мин для разрушения агломератов минеральных частиц и затем при отношении Т:Ж=1:6 подвергают магнитной сепарации при напряженности магнитного поля 40-80 кА/м. Магнитный продукт, выход которого составляет 4,0-7,0 мас.%, представляет собой обогащенный по оксидам железа и скандия концентрат - содержание Fe2O3 и Sc2O3 соответственно, в среднем, 70,0% и 0,035%. При среднем выходе магнитного концентрата 5,5 вес.% извлечение ценных компонентов из исходного красного шлама составляет соответственно ~18% и 15,5%.
Недостаток известного способа - невысокая степень комплексного использования красного шлама, обусловленная низкими степенями извлечения ценных компонентов в целевые продукты.
Технический результат изобретения - обеспечение условий повышения степени использования красного шлама, выражающееся в увеличении степени извлечения ценных компонентов - оксида железа и скандия - в целевые продукты.
Данная цель достигается способом переработки красных шламов глиноземного производства, который включает в себя получение шламовой пульпы, извлечение и концентрирование ценных компонентов на основе комбинации методов классификации и мокрой магнитной сепарации и отличается от ранее известного способа тем, что выделенную при первоначальной классификации исходной пульпы красного шлама тонкозернистую фракцию подвергают виброкавитационной обработке с последующей мокрой магнитной сепарации при определенных значениях напряженности магнитного поля с разделением на магнитный и немагнитный продукты и далее дополнительной классификацией магнитного продукта с получением соответственно железосодержащего и скандийсодержащего концентратов.
Вышеперечисленная совокупность отличительных признаков обеспечивает получение технического результата, заключающегося в повышении степени комплексности переработки красного шлама за счет увеличения степени извлечения ценных компонентов - оксидов железа и скандия - в целевые продукты.
Пример
20,0 дм3 производственной пульпы красного шлама, содержащей 6,0 кг твердой фазы состава, мас.% - 43,0 Fe3O3 и 0,010 Sc2O3 - подвергают ситовой классификации по классу частиц размером 50 мкм. Нижний промпродукт - пульпу частиц размером менее 50 мкм, содержащую 5,2 кг твердой фазы состава, мас.%: 47,0 Fe2O3 и 0,012 Sc2O3 - подвергают обработке в виброкавитационной мешалке при значении окружной скорости ротора перемешивающего устройства ω=50,0 м/с в течение 20 мин. Далее пульпу направляют на магнитную сепарацию в электромагнитном кассетном фильтр-сепараторе при напряженности (Н) магнитного поля 700 кА/м с разделением на магнитный и немагнитный промпродукты с выходом (η) соответственно 25,0 и 75,0%.
Пульпа магнитного продукта, содержащего 1,25 кг твердой фазы (61,4% Fe2O3 и 0,018 Sc2O3), и имеющая Т:Ж=1:5, направляется на классификацию по классу частиц размером 20 мкм.
Пульпа нижнего промпродукта - частицы размером менее 20 мкм - фильтруется, осадок сушится при температуре 110-120°C в течение 2 часов с получением скандийсодержащего концентрата, содержащего 0,040% Sc2O3; выход концентрата 5,0% от количества исходного КШ (фракция - 50 мкм).
Продукт - частицы размером более 20 мкм - представляет (после фильтрации и сушки) железосодержащий концентрат (60,0% Fe2O3) с выходом 80,0% от количества магнитного продукта и/или соответственно 20,0 вес.% от количества исходного КШ (фракция - 50 мкм).
Извлечение оксидов железа и скандия в целевые продукты соответственно 27,5% и 19%.
В табл.1-3 приведены результаты опытов по комплексной переработке красного шлама при осуществлении технологического процесса согласно заявляемого изобретения, а также при выходе за оптимальные пределы параметров.
В табл.1 приведены результаты опытов при осуществлении процесса в оптимальном режиме виброкавитационной обработки пульпы тонкозернистой фракции при прочих равных условиях в целом:
- напряженность (Н) магнитного поля 700 кА/м. Извлечение ценных компонентов сосчитано сквозное, т.е. от содержания в исходном красном шламе и с учетом выхода тонкозернистой фракции (- 50 мкм).
Таким образом, как видно из табл.1, оптимальными условиями виброкавитационной обработки пульпы тонкодисперсной фракции (частицы размером менее 50 мкм), обеспечивающие при прочих равных условиях напряженность магнитного поля 700 кА/м, достижение требуемого технического результата, увеличение степени повышения извлечения ценных компонентов - оксидов железа и скандия - в целевые продукты - существенно выше, чем у известного способа (прототипа), являются следующие (оп.1÷5): значение окружной скорости (ω) ротора при перемешивании 50-80 м/с и продолжительность обработки 15-25 мин.
При выходе за оптимальные пределы параметров:
- снижение окружной скорости ω до 40 м/с (оп.6) или продолжительности обработки до 10 мин (оп.8) приводит не только к снижению выхода (η) магнитного продукта до ~19,0%, но и к существенному снижению содержания в последнем оксида железа - до, в среднем, ~51,0%, что обуславливает снижение извлечения Fe2O3 до ~17,5%, т.е. на уровне величины, получаемой по известному способу. Это связано с недостаточностью разрушения агрегатов железосодержащих магнитных частиц с немагнитными частицами минералов «пустой породы» (гидроалюмосиликаты натрия и гидрогранаты кальция);
- увеличение окружной скорости ω до 90 м/с (оп.7) и/или продолжительности обработки 30 мин (оп.9) снижает выход магнитного продукта до ~17,0% в среднем, а следовательно, и извлечение Fe2O2 до значения ~17,0%, т.е. меньше такового в известном способе. Это связано с переизмельчением частиц гематита (Fe2O3) при виброкавитационной обработке в сверхинтенсивном режиме, что снижает значение магнитной восприимчивости данного основного железосодержащего минерала в красном шламе.
В табл.2 приведены результаты проведения технологического процесса в оптимальном режиме магнитной сепарации при прочих равных условиях первоначальной виброкавитационной обработки: значение окружной скорости ω=65 м/с и продолжительности 20 мин.
Как видно из табл.2, оптимальными условиями магнитной сепарации виброобработанной шламовой пульпы, обеспечивающими достижение требуемого технического результата: повышение комплексности использования красного шлама за счет увеличения степени извлечения ценных компонентов - оксидов железа и скандия в целевые продукты, являются значения напряженности магнитного поля (оп.1÷3) 600-800 кА/м.
При выходе за оптимальные пределы параметров процесса магнитной сепарации:
- за нижний предел - Н=500 кА/м (оп.4) наблюдается снижение выхода магнитного продукта до 16,5%, что обуславливает с одной стороны весьма низкую степень извлечения Fe2O3 (слабомагнитного гематита), равную 17,5%, так и низкую концентрацию оксида скандия, равную 0,019%, что значительно ниже содержания Sc2O3 в целевом продукте по известному способу (~0,035%). Последнее связано с недоизвлечением при пониженной напряженности магнитного поля Sc-содержащего слабомагнитного минерала - шамозита;
- за верхний предел - Н=900 кА/м (оп.5) наблюдается эффект значительного снижения содержания ценных компонентов в магнитном продукте, особенно оксида скандия - до 0,013% Sc2O3, что фактически находится на уровне содержания в исходной тонкодисперсной (частицы размером менее 50 мкм) фракции - 0,012%, т.е. концентрирования ценного компонента практически нет. Это связано с извлечением в магнитный продукт при повышенных значениях напряженности магнитного поля других содержащихся в красном шламе слабомагнитных минералов, в частности алюмокальций-железистые гидрогранаты, содержащие Fe2O3 и Sc2O3 соответственно ~25-30% Fe2O3 и ~0,005% Sc2O3, что в значительной степени разубоживает магнитный продукт.
В табл.3 приведены результаты проведения технологического процесса в оптимальном режиме классификации магнитного продукта при прочих равных условиях на предыдущих технологических операциях: виброкавитационной обработке и магнитной сепарации.
Как видно из табл.3, оптимальным условием классификации магнитного продукта является разделение твердой фазы по классу частиц размерами в диапазоне 15-25 мкм, (оп.1÷3) что обеспечивает увеличение степени извлечения ценных компонентов - оксидов железа и скандия - в целевые продукты: соответственно в среднем до 27,0% и 19%.
Выход технологического параметра классификации либо за нижний предел размера частиц (10 мкм - оп.4), либо за верхний предел (30 мкм - оп.5) приводит к существенному снижению степени извлечения оксида скандия в редкометальный концентрат - до уровня ~11-15%, что ниже значения таковой величины в известном способе.
Это связано с извлечением во фракцию - 10 мкм гидроалюмосиликата натрия Na2O·Al2O3·nSiO2, содержащегося в красном шламе (магнитном продукте), частицы которого имеют размеры 1÷5 мкм, а во втором случае (оп.5) имеет место увеличение выхода скандийсодержащего концентрата до 7,5% за счет повышения содержания в нем гематита (Fe2O3) - минерала, не содержащего оксид скандия, что существенно снижает содержание последнего (до 0,020%) в целевом продукте.
Итак, только проведение процесса переработки красных шламов глиноземного производства при оптимальных условиях: виброкавитационная обработка пульпы тонкозернистой фракции при значениях окружной скорости 50-80 м/с и продолжительности 15-25 мин, магнитная сепарация при напряженности магнитного поля 600-800 кА/м и классификация магнитного продукта по классу частиц 15-25 мин обеспечивают достижение требуемого технического результата: повышение комплексности переработки красных шламов за счет увеличения степени извлечения ценных компонентов оксидов железа и скандия - в целевые продукты (концентраты) соответственно, в среднем, до 27,5% и 19,0%, или увеличению, по сравнению с известным изобретением (прототипом) соответственно на ~8,5% и 4,0%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ СКАНДИЙСОДЕРЖАЩЕГО КОНЦЕНТРАТА ИЗ КРАСНЫХ ШЛАМОВ | 2011 |
|
RU2484164C1 |
СПОСОБ ПОЛУЧЕНИЯ СКАНДИЕВОГО КОНЦЕНТРАТА ИЗ КРАСНОГО ШЛАМА | 2014 |
|
RU2562183C1 |
СПОСОБ ПОЛУЧЕНИЯ СКАНДИЕВОГО КОНЦЕНТРАТА ИЗ КРАСНЫХ ШЛАМОВ | 2013 |
|
RU2536714C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ КРАСНЫХ ШЛАМОВ | 2013 |
|
RU2528918C1 |
ПОЛУЧЕНИЕ СКАНДИЙСОДЕРЖАЩЕГО КОНЦЕНТРАТА И ПОСЛЕДУЮЩЕЕ ИЗВЛЕЧЕНИЕ ИЗ НЕГО ОКСИДА СКАНДИЯ ПОВЫШЕННОЙ ЧИСТОТЫ | 2016 |
|
RU2647398C2 |
Способ переработки красного шлама глиноземного производства | 1986 |
|
SU1715874A1 |
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ КРАСНОГО ШЛАМА ГЛИНОЗЕМНОГО ПРОИЗВОДСТВА | 2017 |
|
RU2692709C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ КРАСНОГО ШЛАМА ГЛИНОЗЕМНОГО ПРОИЗВОДСТВА | 1993 |
|
RU2040587C1 |
Способ извлечения скандия из красных шламов | 2016 |
|
RU2630183C1 |
Способ комплексной переработки глиноземсодержащего сырья | 2022 |
|
RU2787546C1 |
Изобретение относится к цветной металлургии, а именно к комплексной переработке красных шламов глиноземного производства. Способ переработки красных шламов глиноземного производства включает получение пульпы красного шлама, извлечение и концентрирование ценных компонентов комбинацией методов классификации и магнитной сепарации. После классификации пульпы выделяют пульпу тонкозернистой фракции и подвергают ее виброкавитационной обработке и последующей магнитной сепарации с выделением магнитного и немагнитного продуктов. При этом магнитный продукт подвергают дополнительной классификации с получением соответственно железосодержащего и скандийсодержащего концентратов. Техническим результатом является повышение степени комплексности переработки красных шламов за счет увеличения степени извлечения ценных компонентов в целевые продукты - скандийсодержащий концентрат и концентрат оксидов железа. 3 з.п. ф-лы, 3 табл., 1 пр.
1. Способ переработки красных шламов глиноземного производства, включающий извлечение и концентрирование ценных компонентов комбинацией методов классификации и магнитной сепарации, отличающийся тем, что после классификации пульпы исходного красного шлама выделяют пульпу тонкозернистой фракции и подвергают ее виброкавитационной обработке и последующей магнитной сепарации с выделением магнитного и немагнитного продуктов, при этом магнитный продукт подвергают дополнительной классификации с получением соответственно железосодержащего и скандийсодержащего концентратов.
2. Способ по п.1, отличающийся тем, что виброкавитационную обработку пульпы тонкозернистой фракции класса частиц - 50 мкм ведут при окружной скорости при перемешивании 50-80 м/с и продолжительности 15-25 мин.
3. Способ по п.1, отличающийся тем, что магнитную сепарацию обработанной пульпы проводят при напряженности магнитного поля 600-800 кА/м.
4. Способ по п.1, отличающийся тем, что классификацию пульпы магнитного продукта ведут по классу частиц 15-25 мкм.
Способ переработки красного шлама глиноземного производства | 1986 |
|
SU1715874A1 |
SU 1464493 A1, 20.08.2000 | |||
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ, СКАНДИЯ И ИТТРИЯ ИЗ КРАСНЫХ ШЛАМОВ ГЛИНОЗЕМНОГО ПРОИЗВОДСТВА | 1999 |
|
RU2147623C1 |
SU 1321089 A1, 10.06.1999 | |||
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА СКАНДИЯ ИЗ КРАСНОГО ШЛАМА | 2003 |
|
RU2247788C1 |
US 5338520 A, 16.08.1994 | |||
АЭРОЖЕЛОБ УНИВЕРСАЛЬНЫЙ ДЛЯ НЕСЫПУЧЕГО И СЫПУЧЕГО МАТЕРИАЛА | 2010 |
|
RU2460276C2 |
Лентопротяжный механизм | 1979 |
|
SU775753A1 |
Авторы
Даты
2013-04-27—Публикация
2012-02-10—Подача