Способ извлечения скандия из красных шламов Российский патент 2017 года по МПК C22B59/00 C22B3/12 C22B3/24 

Описание патента на изобретение RU2630183C1

Изобретение относится к области цветной металлургии, в частности к способам переработки красного шлама - отхода глиноземного производства, с извлечением скандия.

Известен способ извлечения скандия из красного шлама, включающий выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы (Патент РФ №2581327, С22B 5900 «Способ извлечения скандия из красного шлама производства глинозема»). Выщелачивание скандия из красного шлама ведут серной кислотой с концентрацией не менее 320 г/л при температуре не ниже 80°C в присутствии фторида натрия в количестве не менее 20 г/л. Извлечение скандия достигает 97,2%.

К недостаткам данного способа относится проведение выщелачивания в кислых средах, что требует использования дорогостоящего кислотостойкого оборудования. В полученном растворе после выщелачивания содержание примесей (Fe, Al, Ti, Са, Na) многократно (500-1000 раз) превышает содержание скандия. Это, в свою очередь, существенно затрудняет последующее селективное отделение скандия от многокомпонентного раствора. Наблюдаются значительные выделения сернистого ангидрида и других вредных газов, что ухудшает условия труда и пагубно влияет на окружающую среду.

Известен способ получения скандиевого концентрата из красных шламов, включающий выщелачивание скандия из красного шлама методом карбонизации исходной шламовой пульпы (отношение Т:Ж=1:3,0-4,0) углекислым газом из баллонов при температуре 35-40°C в присутствии фосфорнокислых ионитов при соотношении ионит: красный шлам, равном 1:50-80 в течение 6-10 часов (Сабирзянов Н.А., Яценко С.П. Гидрохимические способы комплексной переработки бокситов. - Екатеринбург, ИХТТ УрО РАН, 2006 г., с. 242-243) с последующим отделением ионита от пульпы на грохоте. В данном способе десорбцию скандия проводят смешанным карбонатно-хлоридным раствором с получением скандийсодержащего элюата. Осаждение скандиевого концентрата из элюата проводят кипячением при значениях pH 12,0-13,0 в течение 0,5-1,0 часа.

Недостатками данного способа являются, во-первых, низкое извлечение скандия - не более 15-20%, во-вторых, большая продолжительность процесса выщелачивания, связанная с ухудшением кинетики выщелачивания вследствие проведения процесса при низких температурах.

Наиболее близким к заявляемому способу по технологической сущности, совокупности признаков и достигаемому техническому результату является способ получения скандийсодержащего концентрата из красных шламов (Патент РФ №2 536 714, С22В 59/00 «Способ получения скандийсодержащего концентрата из красных шламов»).

Способ включает в себя карбонизационное выщелачивание скандия из красного шлама раствором гидрокарбоната натрия при пропускании через шламовую пульпу газовоздушной смеси, содержащей СО2. Выщелачивание ведут при концентрации NaHCO3 100-150 г/дм3, температуре 55-65°C и продолжительности 4-6 часов с первоначальной виброкавитационной обработкой шламовой пульпы с линейной скоростью перемешивания 20-40 м/с и продолжительностью 45-60 мин. После выщелачивания отделение скандия от примесных компонентов с соответствующим концентрированием из полученного скандийсодержащего раствора ведут сорбцией фосфорнокислыми ионитами. Десорбцию скандия из органической фазы ионитов осуществляют смешанными карбонатно-хлоридными растворами в пульсационном режиме с получением скандийсодержащего элюата, из которого осуществляют стадийное осаждение малорастворимых соединений скандия, при этом вначале ведут осаждение малорастворимых соединений примесных компонентов с отделением осадка, являющегося титан-циркониевым концентратом, а затем проводят осаждение скандиевого концентрата.

Недостатками способа являются:

1. Низкое извлечение скандия на стадии выщелачивания - не более 18-24%.

2. Для создания кавитации необходимо использование весьма энергозатратного оборудования (виброкавитационная мешалка), способного работать при высоких скоростях вращения (4600-9200 об/мин) для создания заданной линейной скорости 20-40 м/с (1 м/с=230 об/мин).

3. Использование процесса фильтрации на стадии отделения скандийсодержащего раствора от твердого остатка после карбонизационного выщелачивания значительно увеличивает продолжительность процесса и уменьшает производительность фабрики.

Техническая задача, на решение которой направлено заявленное изобретение, состоит в повышении извлечения скандия (до 51-54%) и улучшении кинетики процесса выщелачивания.

Поставленная техническая задача решается тем, что в способе извлечения скандия из красного шлама, включающий карбонизационное выщелачивание красного шлама при пропускании через шламовую пульпу газовоздушной смеси, содержащей СO2, с одновременной сорбцией скандия фосфорнокислыми ионитами (катионит марки КФП-12, амфолит АНКФ-80), шламовую пульпу предварительно обрабатывают ультразвуком, затем проводят выщелачивание скандия при газации шламовой пульпы газовоздушной смесью, содержащей CO2, с одновременной сорбцией скандия ионитами.

Ультразвуковая обработка шламовой пульпы может быть проведена при интенсивности 25-35 Вт/см2, температуре 25-40°C и продолжительности 2-4 минуты.

Выщелачивание скандия с одновременной сорбцией из красного шлама может быть проведено раствором, содержащим 100-120 г/дм3 NaHCO3, при газации шламовой пульпы газовоздушной смесью, содержащей 8-17% СO2, при соотношении ионит к красному шламу 1:20-50 и при температуре 55-60°C в течение 3-5 часов.

Техническим результатом, достижение которого обеспечивается реализацией всей заявляемой совокупности существенных признаков способа, является:

- повышение извлечения скандия за счет предварительной виброкавитационной обработки шламовой пульпы;

- улучшение кинетики выщелачивания вследствие совмещения процесса выщелачивания и сорбции.

Известно, что в процессе обескремнивания шламовых пульп при производстве глинозема на поверхности зерен красного шлама, в том числе скандийсодержащих, образуются экранирующие пленки гидроалюмосиликата натрия (ГАСН), которые приводят к снижению извлечения скандия в раствор при последующем выщелачивании. В этой связи, предварительная ультразвуковая обработка за счет вторичных эффектов (кавитация, пульсация, микро- и макропотоки) позволяет удалить эти пленки и значительно улучшить последующую кинетику выщелачивания.

В качестве источника ультразвука можно использовать низкочастотные погружные ультразвуковые излучатели.

В составе красного шлама содержится много поверхностно-активных мономинералов (различны модификации ГАСН), которые способны в процессе выщелачивания активно адсорбировать на себя перешедшие в раствор соединения скандия, что в конечном итоге приводит к безвозвратной потере скандия с твердым остатком. В этой связи наиболее совершенным методом является процесс сорбционного выщелачивания - проведение процесса выщелачивания с одновременной сорбцией. Сорбентом является наиболее твердое вещество с активной поверхностью, по адсорбционной способности превосходящее в сотни раз поверхностно-активные монокомпоненты красного шлама. Кроме того, совмещение процесса выщелачивания и сорбции исключает из технологической схемы такой длительный и энергоемкий процесс, как фильтрация. При этом отделение смолы от шламовой пульпы может быть осуществлено на виброгрохоте.

В предлагаемом способе шламовую пульпу предварительно обрабатывают ультразвуком с интенсивностью 25-35 Вт/см2 при температуре 25-40°C в течение 2-4 минут, затем в обработанную шламовую пульпу вводят гидрокарбонат натрия (NaHO3) и ионит и подвергают сорбционному выщелачиванию при продолжительности 2-4 часа с последующим отделением шламовой пульпы от ионита, что способствует увеличению извлечения скандия с 18-24% (по прототипу) до 51-54%. Интенсивность ультразвукового воздействия в пределах 25-35 Вт/см2 является наиболее эффективной с точки зрения повышения извлечения скандия и минимизации затрат на обработку. При продолжительности ультразвуковой обработки красного шлама менее 2 минут последующее выщелачивание с одновременной сорбцией не обеспечивает извлечение скандия на уровне 51-54%. Увеличение продолжительности ультразвуковой обработки более 4 минут повышает энергозатраты на обработку и не приводит к увеличению извлечения скандия более 54%. За счет ультразвуковой обработки происходит нагрев пульпы с 25 до 40°C.

Способ получения скандиевого концентрата из красного шлама подтверждается следующими примерами.

Пример 1. Шламовую пульпу исходного красного шлама производственного цикла глиноземного производства, имеющую следующий химический состав: твердая фаза, масс. %: 46,5 Fe2O3 общ, 12,0 Al2O3, 8,0 СаО, 10,0 SiO2, 4,50 TiO2, 0,0135 Sc2O3, 0,10 ZrO2; жидкая фаза, г/дм3: 5,0 Na2Oобщ, 4,0 Na2Окст, 3,0 Al2O3, значение рН-12,5; отношение Т:Ж в пульпе равно, в среднем, 1,0:4,0, подвергают ультразвуковой обработке при интенсивности 25 Вт/см2, температуре 25-40°C и продолжительности 2 минуты.

В качестве источника ультразвука был использован индустриальный звуковой процессор «Hielscher Ultrasound Technology UP» марки UIP 1000hd погружного типа.

Затем обработанную шламовую пульпу подвергают выщелачиванию с одновременной сорбцией фосфорнокислыми ионитами, раствором концентрацией 100 г/дм3 NaHCO3, при газации шламовой пульпы газовоздушной смесью, содержащей 8-17% СO2, при соотношении ионит к красному шламу 1:20 и при температуре 55-60°C в течение 5 часов.

После выщелачивания ионит от шламовой пульпы отделяют на виброгрохоте. По окончании процесса выщелачивания с одновременной сорбцией стандартными методами анализа на смоле определяют извлечение скандия, которое составляло 51%.

Пример 2. Шламовую пульпу, имеющую химический состав приведенной в примере 1, подвергают ультразвуковой обработке при интенсивности 35 Вт/см2, температуре 25-40°C и продолжительности 4 минуты. Затем обработанную шламовую пульпу подвергают выщелачиванию с одновременной сорбцией, раствором концентрацией 120 г/дм3 NaHCO3, при газации шламовой пульпы газовоздушной смесью, содержащей 8-17% СO2, при соотношении ионит к красному шламу 1:50 и при температуре 55-60°C в течение 3 часов.

В качестве источника ультразвука был использован тот же звуковой процессор, как в примере 1.

Отделение ионита от шламовой пульпы и определение извлечения скандия осуществлялось аналогично в соответствии с примером 1. Извлечение скандия составляло 54%.

Похожие патенты RU2630183C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СКАНДИЕВОГО КОНЦЕНТРАТА ИЗ КРАСНЫХ ШЛАМОВ 2013
  • Климентенок Геннадий Николаевич
  • Анашкин Вячеслав Серафимович
  • Вишняков Сергей Егорович
  • Панов Андрей Владимирович
RU2536714C1
СПОСОБ ПОЛУЧЕНИЯ СКАНДИЕВОГО КОНЦЕНТРАТА ИЗ КРАСНОГО ШЛАМА 2014
  • Анашкин Вячеслав Серафимович
  • Вишняков Сергей Егорович
  • Петракова Ольга Викторовна
  • Горбачев Сергей Николаевич
  • Панов Андрей Владимирович
RU2562183C1
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ КРАСНОГО ШЛАМА ГЛИНОЗЕМНОГО ПРОИЗВОДСТВА 2017
  • Козырев Александр Борисович
  • Петракова Ольга Викторовна
  • Сусс Александр Геннадиевич
  • Горбачев Сергей Николаевич
  • Панов Андрей Владимирович
RU2692709C2
ПОЛУЧЕНИЕ СКАНДИЙСОДЕРЖАЩЕГО КОНЦЕНТРАТА И ПОСЛЕДУЮЩЕЕ ИЗВЛЕЧЕНИЕ ИЗ НЕГО ОКСИДА СКАНДИЯ ПОВЫШЕННОЙ ЧИСТОТЫ 2016
  • Сусс Александр Геннадиевич
  • Козырев Александр Борисович
  • Панов Андрей Владимирович
RU2647398C2
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙ-СОДЕРЖАЩИХ МАТЕРИАЛОВ 2020
  • Козырев Александр Борисович
  • Петракова Ольга Викторовна
  • Сусс Александр Геннадиевич
  • Панов Андрей Владимирович
RU2729282C1
СПОСОБ ПОЛУЧЕНИЯ СКАНДИЙСОДЕРЖАЩЕГО КОНЦЕНТРАТА ИЗ КРАСНЫХ ШЛАМОВ 2011
  • Анашкин Вячеслав Серафимович
  • Бухаров Алексей Николаевич
  • Гиршин Григорий Лазаревич
  • Ефимов Алексей Юрьевич
  • Сиваков Дмитрий Александрович
RU2484164C1
СКАНДИЙСОДЕРЖАЩИЙ ГЛИНОЗЕМ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2020
  • Манн Виктор Христьянович
  • Ордон Сергей Федорович
  • Козырев Александр Борисович
  • Петракова Ольга Викторовна
  • Сусс Александр Геннадиевич
  • Мильшин Олег Николаевич
  • Панов Андрей Владимирович
RU2758439C1
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО МАТЕРИАЛА 2014
  • Нечаев Андрей Валерьевич
  • Козырев Александр Борисович
  • Сибилев Александр Сергеевич
  • Смирнов Александр Всеволодович
  • Петракова Ольга Викторовна
  • Горбачев Сергей Николаевич
  • Панов Андрей Владимирович
RU2582425C1
СПОСОБ ПЕРЕРАБОТКИ СКАНДИЙСОДЕРЖАЩИХ РАСТВОРОВ 2001
  • Кудрявский Ю.П.
  • Анашкин В.С.
  • Казанцев В.П.
  • Трапезников Ю.Ф.
  • Смирнов А.Л.
  • Стрелков В.В.
RU2196184C2
Способ извлечения скандия из скандийсодержащего сырья 2019
  • Нечаев Андрей Валерьевич
  • Шестаков Сергей Владимирович
  • Сибилев Александр Сергеевич
  • Смирнов Александр Всеволодович
  • Жуков Станислав Викторович
RU2694866C1

Реферат патента 2017 года Способ извлечения скандия из красных шламов

Изобретение относится к области металлургии цветных металлов, в частности к извлечению скандия из красных шламов - отходов глиноземного производства. Способ включает выщелачивание красного шлама карбонатными растворами при одновременной газации шламовой пульпы газовоздушной смесью, содержащей СO2. Выщелачивание красного шлама ведут с первоначальной ультразвуковой обработкой пульпы в присутствии ионита. После выщелачивания шламовую пульпу отделяют от ионита. Техническим результатом изобретения является повышение извлечения скандия до 51-54% и улучшение кинетики процесса выщелачивания. 1 з.п. ф-лы, 2 пр.

Формула изобретения RU 2 630 183 C1

1. Способ извлечения скандия из красного шлама глиноземного производства, включающий карбонизационное выщелачивание скандия из красного шлама при пропускании через шламовую пульпу газовоздушной смеси, содержащей СO2, с одновременной сорбцией скандия фосфорнокислыми ионитами, отличающийся тем, что шламовую пульпу предварительно обрабатывают ультразвуком при интенсивности 25-35 Вт/см2, температуре 25-40°С и продолжительности 2-4 мин.

2. Способ по п. 1, отличающийся тем, что выщелачивание скандия с одновременной сорбцией из красного шлама ведут раствором, содержащим 100-120 г/дм3 NaHCO3, при пропускании через шламовую пульпу газовоздушной смеси, содержащей 8-17% CO2, при соотношении ионита к красному шламу 1:20-50 и при температуре 55-60°С в течение 3-5 ч.

Документы, цитированные в отчете о поиске Патент 2017 года RU2630183C1

СПОСОБ ПОЛУЧЕНИЯ СКАНДИЕВОГО КОНЦЕНТРАТА ИЗ КРАСНЫХ ШЛАМОВ 2013
  • Климентенок Геннадий Николаевич
  • Анашкин Вячеслав Серафимович
  • Вишняков Сергей Егорович
  • Панов Андрей Владимирович
RU2536714C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА СКАНДИЯ ИЗ КРАСНОГО ШЛАМА 2003
  • Яценко С.П.
  • Сабирзянов Н.А.
  • Пасечник Л.А.
  • Рубинштейн Г.М.
  • Диев В.Н.
  • Скрябнева Л.М.
RU2247788C1
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ПРИ ПЕРЕРАБОТКЕ БОКСИТОВ НА ГЛИНОЗЕМ 2001
  • Диев В.Н.
  • Сабирзянов Н.А.
  • Скрябнева Л.М.
  • Яценко С.П.
  • Анашкин В.С.
  • Аминов С.Н.
  • Завадский К.Ф.
  • Сысоев А.В.
  • Устич Е.П.
RU2201988C2
US 5338520 A, 16.08.1994
АЭРОЖЕЛОБ УНИВЕРСАЛЬНЫЙ ДЛЯ НЕСЫПУЧЕГО И СЫПУЧЕГО МАТЕРИАЛА 2010
  • Дианов Леонид Васильевич
  • Борисова Марина Леонтьевна
  • Чеботарев Илья Анатольевич
  • Гаврилов Андрей Романович
RU2460276C2
Лентопротяжный механизм 1979
  • Буда Антанас Витаутас Антано
  • Будене Снегуоле Клеменсо
SU775753A1
CN 101555548 A, 14.10.2009
WO 03010295 A1, 06.02.2003.

RU 2 630 183 C1

Авторы

Бобоев Икромджон Рахмонович

Александров Павел Владимирович

Имидеев Виталий Александрович

Даты

2017-09-05Публикация

2016-11-11Подача