Изобретение относится к области металлургии, к разработке новых нерадиоактивных материалов, и может быть использовано в атомной энергетической промышленности. Традиционные нерадиоактивные металлы, используемые более 50 лет в атомных энергетических установках, - это циркониевые сплавы (∋125, ∋225), коррозионно-стойкая сталь (08Х18Н10Т) и бористая сталь ЧС82 (04Х14Т3Р1Ф). Последняя, за счет содержания бора, обладает свойством поглощения тепловых нейтронов. В настоящее время из нее изготавливают шестигранные трубы для комплектации стеллажей свежего ядерного топлива и бассейнов выдержки отработанных тепловыделяющих сборок.
Эта сталь получила широкое применение в атомном машиностроении, разработаны и утверждены ТУ 14-1-3689-83, ТУ 14-1-4599-89 на получение трубной заготовки из стали ЧС82. А также разработана технология получения горячекатаных труб из этой стали (ТУ 14-242-275-89), которые служат заготовкой для получения шестигранных труб (ТУ 14-3-1630-89).
При этом до настоящего времени расходный коэффициент металла, от трубной заготовки до готового шестигранника, составляет более 400% (из четырех тонн круга получаем одну тонну готовой продукции). Это связано с низкими пластическими свойствами стали ЧС82 (δ5≤10% при +20°С). В итоге в технологическом регламенте не предусмотрена холодная пластическая деформация труб из ст. ЧС82 вследствие склонности этого металла к возникновению макро- и микротрещин в режиме холодного передела. Также современные требования к материалам, которые способны поглощать тепловые нейтроны от радиоактивных элементов, диктуют повышение уровня поглощения.
Наиболее близким к описываемому по технической сущности и достигаемому эффекту является сплав на основе титана ВТ 1-0 (ГОСТ 19807-91: Титан и сплавы титановые деформируемые) следующего состава, вес.%:
Этот сплав имеет применение в авиастроении, химическом машиностроении в силу малого удельного веса (4,5 г/см3), по сравнению с железо-хромовыми сплавами (7,85 г/см3), а также антикоррозионных свойств. Для увеличения прочностных свойств сплава на основе титана и его коррозионной стойкости при эксплуатации в соприкосновении с морской водой был разработан ФГУП «ПРОМЕТЕЙ» сплав на основе титана ПТ7М (ГОСТ 19807-91), который также на сегодня имеет опыт применения в атомной энергетике (см. статью Ушкова С.С. и др. - «Вопросы материаловедения», 2009, №3 (59), с.172-187).
Однако переход от железо-хромового сплава к сплаву на основе титана ВТ1-0, включая добавление элементов алюминия (до 2,5%) и циркония (до 3%), в случае сплава ПТ7М, не решает проблему материала по поглощению тепловых нейтронов. В табл.1 на основании известных данных из справочника (Свойства элементов: Справ. Издание в 2 книгах / Под ред. Дница М.Е. - М.: Издательский дом «Руда и металлы», 2003) представлены значения эффективных поперечных сечений захвата тепловых нейтронов для природных изотопов железа, хрома, титана, алюминия, циркония, бора.
Из табл.1 следует, что природный изотоп бора 10В в тысячи раз эффективнее поглощения тепловых нейтронов, чем перечисленные железо, хром, титан, алюминий и цирконий.
При этом здесь отметим, что изделия из сплава ВТ1-0 (например, бесшовные трубы - ГОСТ 22897-86) имеют более низкие прочностные свойства (σb≥343 МПа, σ02≥245 МПа, δ5≈0,24), по сравнению со сталью ЧС82 (σb≥441 МПа, σ02≥245 МПа, δ5≈0,1) и сплавом на основе титана ПТ7М (σb≥470 МПа, σ02≥372 МПа, δ5≈0,20). Известны изобретения (а.с. СССР №2016132, БИ №13, 15.07.94; а.с. СССР №1258868, БИ №16, 30.04.93; а.с. СССР №2020186, БИ №18, 30.09.94), где добавление в металлические сплавы элемента бора увеличивает их прочностные свойства, а также теплостойкость, износостойкость и ударную вязкость материала.
Задача настоящего изобретения - разработка материала, который бы имел не только высокий уровень поглощения тепловых нейтронов, но и обладал высокими эксплуатационными и пластическими свойствами.
Поставленная задача достигается тем, что в известный сплав ВТ1-0 на основе титана добавляют элемент бор в следующем количестве, вес.%: 1,5-3,5.
Отличие предложенного сплава СПБ от прототипа ВТ1-0 заключается в том, что с добавлением в сплав ВТ1-0 на основе титана природной смеси изотопов бора 10В и 11В повышается на три порядка не только уровень поглощения тепловых нейтронов, но и прочностные свойства заявляемого сплава СПБ - сплав на основе титана с бором.
Диапазон содержания в сплаве СПБ бора обусловлен оптимальным уровнем поглощения тепловых нейтронов и экономической целесообразностью. Ниже 1,5% - сплав СПБ теряет устойчивость (по сплошности распределения бора) по захвату тепловых нейтронов, более 3,5% - резко снижаются пластические свойства сплава (δ5<0,1).
Для получения сплавов на основе титана используется электронно-лучевой переплав (ЭЛП) в вакуумных печах. В качестве основного сырья применяется губчатый титан (марки ТГ100, ТГ110) с содержанием титана (99,7-99,7)% согласно ГОСТ 17746-96. С целью равномерного распределения легирующих элементов в слитке осуществляется двойной переплав. Контроль нейтронного поглощения полученного сплава СПБ в слитке и трубах осуществляется с помощью отечественной установки УКПН-1.
Пример получения сплава СПБ. Губчатый титан ТГ100 в виде дискретных кусков размером (20-45) мм перемешивается с природным технически чистым бором в соотношении: 1 кг (ТГ100)+0,02 кг (В), в общем объеме 20 кг и подается в экспериментальную установку (ЭЛП). После двойного переплава получаем слиток ⌀100 мм длиной 500 мм. После обточки и ротационной ковки слитка на диаметр 65 мм получим микроструктуру сплава СПБ с величиной зерна 5-6 баллов. Горячее прессование позволяет получить трубу-заготовку для последующего холодного передела.
В табл. 2 приведен химический состав полученного сплава СПБ, а в табл.3 представлены механические свойства кованного круга ⌀65 мм из сплава СПБ при +20°С вместе с величиной поглощения тепловых нейтронов при содержании бора 1,7% и 2,3%. Для сравнения в табл.2-3 представлены химический состав и механические свойства кованного круга ⌀65 мм из сплава ВТ1-0, изготовленного на ОАО «ВСМПО АВИСМА» (г. В-Салда), согласно ГОСТ 26492-85.
Как следует из табл.1-3, заявленный сплав СПБ имеет высокий уровень поглощения тепловых нейтронов, по сравнению с прототипом ВТ1-0, при этом имеет высокие прочностные свойства.
название | год | авторы | номер документа |
---|---|---|---|
СПЛАВ ДЛЯ ПОГЛОЩЕНИЯ ТЕПЛОВЫХ НЕЙТРОНОВ НА ОСНОВЕ ТИТАНА | 2013 |
|
RU2519063C1 |
СПЛАВ ДЛЯ ПОГЛОЩЕНИЯ ТЕПЛОВЫХ НЕЙТРОНОВ НА ОСНОВЕ АЛЮМИНИЯ | 2019 |
|
RU2697675C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕХАНИЧЕСКИХ СВОЙСТВ МЕТАЛЛОВ | 2012 |
|
RU2543673C2 |
СПЛАВ ДЛЯ ПОГЛОЩЕНИЯ ТЕПЛОВЫХ НЕЙТРОНОВ НА ОСНОВЕ ЦИРКОНИЯ | 2018 |
|
RU2688086C1 |
Способ идентификации металлов | 2019 |
|
RU2715903C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПИКА ПЛАСТИЧНОСТИ ДЛЯ МЕТАЛЛОВ | 2017 |
|
RU2685118C1 |
СПОСОБ МОКРОЙ ОЧИСТКИ ДЫМОВЫХ ГАЗОВ ОТ ТВЕРДЫХ И ТОКСИЧНЫХ ЭЛЕМЕНТОВ | 2013 |
|
RU2556656C1 |
АУСТЕНИТНЫЙ ЖЕЛЕЗОХРОМОНИКЕЛЕВЫЙ СПЛАВ ДЛЯ ПРУЖИННЫХ ЭЛЕМЕНТОВ АТОМНЫХ РЕАКТОРОВ | 1997 |
|
RU2124065C1 |
СПОСОБ ИДЕНТИФИКАЦИИ МЕТАЛЛОВ И СПЛАВОВ | 2024 |
|
RU2820414C1 |
СПОСОБ УТИЛИЗАЦИИ ТРУБ ИЗ ТИТАНОВЫХ СПЛАВОВ И КОРРОЗИОННО-СТОЙКИХ СТАЛЕЙ | 2004 |
|
RU2292970C2 |
Изобретение относится к области металлургии, а именно к разработке новых нерадиоактивных материалов, и может быть использовано в атомной энергетической промышленности. Сплав для поглощения тепловых нейтронов на основе титана содержит, вес.%: углерод 0,03-0,07, железо 0,15-0,25, кремний 0,05-0,10, азот 0,010-0,030, алюминий 0,05-0,50, бор 1,5-3,5, титан и примеси - остальное. Сплав обладает повышенным уровнем поглощения тепловых нейтронов, высокими эксплуатационными и пластическими свойствами. 3 табл., 1 пр.
Сплав для поглощения тепловых нейтронов на основе титана, содержащий углерод, железо, кремний, азот и алюминий, отличающийся тем, что он дополнительно содержит бор при следующем соотношении компонентов, вес.%:
УШКОВ С.С | |||
и др | |||
Опыт применения и значение титановых сплавов для развития атомной энергетики России | |||
Вопросы материаловедения, 2009, №3(59), с.172-187 | |||
СПЛАВ НА ОСНОВЕ ТИТАНА | 1990 |
|
RU1746727C |
Пенал | 1929 |
|
SU24270A1 |
JP 9087782 А, 31.03.1997 | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
2013-05-27—Публикация
2011-04-21—Подача