Изобретение относится к области металлургии, к разработке новых нерадиоактивных материалов и может быть использовано в атомной энергетической промышленности. В частности, для изготовления специального оборудования для влажного и сухого хранения отработанного ядерного топлива и его транспортировки.
На сегодня, в отечественной промышленности для этих целей применяется сталь ЧС82 (04Х14Т3Р1Ф), (см. а.с. СССР №1122009, 1983 г., а также описание к патенту РФ №2483132, 2013 г.). За рубежом, сталь «БОРОН-304» (БССК, Англия). С 2008 года - алюминиевый сплав «Metamic™» (Holtec International, США). Все эти материалы обладают свойством поглощения тепловых нейтронов, за счет наличия в из составе в определенных пропорциях бора и его изотопа 10В.
Переход к новым типам ядерного топлива, более перспективным с точки зрения энергетики, предъявляет повышенные требования к материалу с поглощающими свойствами. Увеличение в процентном соотношении бора в названных металлах, существенно их охрупчивает, что делает их не пригодными в технологической переработке. Это общее свойство боридов, который бы имел не только высокий уровень поглощения тепловых нейтронов, но и обладал высокими эксплуатационными и пластическими свойствами, что в целом обеспечивает безопасность хранения отработанного ядерного топлива.
Известен сплав для поглощения тепловых нейтронов на основе титана (патент РФ №2519063, БИ №16, 2014 г.). Здесь для увеличения поглощающих свойств известного сплава титана ПТ7М, добавляют в состав редкоземельный элемент - самарий, обладающий большим сечением захвата тепловых нейтронов (для природных изотопов: 149Sm ~ 50000⋅10-28 м2, 152Sm ~ 5600⋅10-28 м2, 154Sm ~ 5600⋅10-28 м2). Соответственно для бора: 10В ~ 3838⋅10-2 м2, 11B ~ 757-10-28 м2 (см. Справочник: свойства элементов / По ред. Дница М.Е. - М.: Издательский дом. «Руда и Металлы», 2005).
Недостатком этого сплава является способность титановой основы - матрицы поглощать водород из воздуха, особенно интенсивно при повышении температуры окружающей среды. Что приводит к охрупчиванию металла, его к растрескиванию со временем его эксплуатации. Это не допустимо в изделиях при сухом хранении отработанного ядерного топлива.
Наиболее близкий к описываемому по технической сущности и достигаемому эффекту является сплав на основе циркония (сплав Э110, ТУ95.166-83), который также применяется в атомной энергетике. Химический состав сплава Э110, вес. %:
Ниобий 0,9-1,1;
Цирконий и примеси остальное.
Содержание примесей представлено в табл. 1.
Поставленная цель достигается тем, что в известный сплав Э110 на основе циркония, добавляют редкоземельный элемент - самарий, в объеме, вес. %: (0,5-5,0), при этом увеличивается присутствие гафния в пределах вес. %: (0,5-2,5). Содержание примесей представлено табл. 2, где элемент гафний исключен из примесей и переведен в разряд состава сплава.
В атомной энергетике цирконий, благодаря высоким коррозионным свойствам, малому поперечному сечению захвата тепловых нейтронов, хорошим механическим свойствам и высокой жаропрочности, используют более пятидесяти лет для оболочек тепловыделяющих элементов в ядерных реакторах. Одна из проблем применения циркония в ядерной энергетике в качестве материала для оболочки тепловыделяющего элемента (ТВЭЛа) и других активной зоны реактора, это очистка циркония от примеси гафния. Последний имеет достаточно высокое эффективное сечение поглощения тепловых нейтронов (в среднем ~ 300⋅10-28 м2), по сравнению с цирконием ~ 0,18⋅10-28 м2, алюминием ~ 0,21⋅10-28 м2, титаном ~ 8,3⋅10-28 м2, ниобием ~ 1,1⋅10-28 м2, А так как цель изобретения - создание материала с высокой поглощающей способностью, в отличие от твельного варианта, содержание гафния в пределах технологической доступности (0,5-2,5)%, существенно снижает себестоимость заявленного материала.
Диапазон содержания в сплаве самария обусловлен оптимальным уровнем поглощения тепловых нейтронов и экономической целесообразностью. Ниже 0,5% - сплав не обеспечивает необходимый уровень поглощения, более 5% - повышается себестоимость сплава. Отметим, при выплавке циркониевого сплава, допускается добавление в его состав не только технически чистого самария, изготовленного по ТУ48-4-207-72, но и оксиды Sm2O3, гидриды SmH2, SmH3. При сплавлении самария с цирконием, образуется интерметаллическое соединение с высокими эксплуатационными свойствами. При этом, в отличие от бора, самарий не охрупчивает сплав, а существенно увеличивает его поглощающиеся возможности.
Промышленное производство циркониевых сплавов (Э635, Э110, Э125) с пониженным содержанием гафния, а также изделия из них (прутки, трубы, листы…) освоено на АО «Чепецкий механический завод», г. Глазов (www.chmz.net).
название | год | авторы | номер документа |
---|---|---|---|
СПЛАВ ДЛЯ ПОГЛОЩЕНИЯ ТЕПЛОВЫХ НЕЙТРОНОВ НА ОСНОВЕ ТИТАНА | 2013 |
|
RU2519063C1 |
СПЛАВ ДЛЯ ПОГЛОЩЕНИЯ ТЕПЛОВЫХ НЕЙТРОНОВ НА ОСНОВЕ АЛЮМИНИЯ | 2019 |
|
RU2697675C1 |
СПЛАВ ДЛЯ ПОГЛОЩЕНИЯ ТЕПЛОВЫХ НЕЙТРОНОВ НА ОСНОВЕ ТИТАНА | 2011 |
|
RU2483132C2 |
ПОГЛОТИТЕЛЬ НЕЙТРОНОВ ДЛЯ СТЕРЖНЕЙ РЕГУЛИРОВАНИЯ ЯДЕРНЫХ РЕАКТОРОВ | 1996 |
|
RU2101789C1 |
ПОГЛОТИТЕЛЬ НЕЙТРОНОВ ДЛЯ ЯДЕРНЫХ РЕАКТОРОВ | 1996 |
|
RU2124240C1 |
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННО СТОЙКАЯ СТАЛЬ | 2007 |
|
RU2360992C1 |
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ | 2001 |
|
RU2211878C2 |
ХЛАДОСТОЙКАЯ СТАЛЬ ДЛЯ УСТРОЙСТВ ХРАНЕНИЯ ОТРАБОТАВШИХ ЯДЕРНЫХ МАТЕРИАЛОВ | 2022 |
|
RU2804233C1 |
Способ определения содержания гафния в металлическом цирконии и сплавах на его основе | 2021 |
|
RU2756666C1 |
КОРРОЗИОННО-СТОЙКАЯ НЕЙТРОННО-ПОГЛОЩАЮЩАЯ СТАЛЬ | 2022 |
|
RU2800699C1 |
Изобретение относится к области металлургии, к разработке новых нерадиоактивных материалов и может быть использовано в атомной энергетической промышленности для изготовления специального оборудования для влажного и сухого хранения отработанного ядерного топлива и его транспортировки. Сплав для поглощения тепловых нейтронов на основе циркония содержит, вес.%: ниобий 0,9-1,1; самарий 0,5-5,0; гафний 0,5-2,5; цирконий и примеси остальное. Сплав характеризуется высоким уровнем поглощения тепловых нейтронов при сохранении эксплуатационной надежности. 2 табл.
Сплав на основе циркония для поглощения тепловых нейтронов, содержащий ниобий, цирконий и примеси, отличающийся тем, что он дополнительно содержит самарий и гафний при следующем содержании компонентов, вес. %:
ЦИРКОНИЙ-НИОБИЕВЫЙ КИСЛОРОДСОДЕРЖАЩИЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2002 |
|
RU2227171C1 |
СПЛАВ НА ОСНОВЕ ЦИРКОНИЯ | 2006 |
|
RU2342450C2 |
US 5076488 A1, 31.12.1991 | |||
US 8989339 B2, 24.03.2015 | |||
US 8795441 B2, 05.08.2014. |
Авторы
Даты
2019-05-17—Публикация
2018-12-20—Подача