Изобретение относится к химии высокомолекулярных соединений, а именно к процессам получения композиций наночастиц серебра и водорастворимых синтетических сополимеров.
В нанокомпозитах серебра полимеры выполняют роль стабилизатора, образуя на поверхности наночастиц защитную оболочку. Известны нанокомпозиты на основе водорастворимых синтетических полимеров: поли-N-винилпирролидона, полиэтиленгликоля, поливинилового спирта, полиамидоаминовых дендримеров, поливинилтриазолов [Qin W., Tursen J. Anal. Sci. 2009. V.25. №3. P.333-337; Esumi K., Suzuki A., Yamahira A., Torigoe К. Langmuir. 2000. V.16. №6. P.2604-2608; Мячина Г.Ф., Коржова С.А., Ермакова Т.Г. и др. ДАН. 2008. Т.420. №3. С.344-345]. Наряду с синтетическими используются и природные полимеры - полисахариды: крахмал, арабиногалактан и др. [Valodkar M., Bhadoria A., Pohnerkar J. et al. Carbohydrate Res. 2010. V.34. №12. P.1767-1773; Huang, H.; Yuan, Q.; Yang, X. Colloids and Surfaces B: Biointerfaces. 2004. V.39. №1-2. P.31-37]. Традиционные методы синтеза наночастиц металлов предполагают использование восстанавливающих агентов: аскорбиновой кислоты, цитрата натрия, тетрабората натрия, моно- и дисахаридов, а также повышенной температуры и/или излучения [Bernabo M., Pucci A., Galembeck F. et al. Macromol. Mater. Eng. 2009. V.294. №4. P.256-264; Valodkar M., Bhadoria A., Pohnerkar J. et al. Carbohydrate Res. 2010. V.34. №12. P.1767-1773; Donati I., Travan A., Pelillo C. et al. Biomacromolecules. 2009. V.10. №2. P.210-213; Huang, H.; Yuan, Q.; Yang, X. Colloids and Surfaces B: Biointerfaces. 2004. V.39. №1-2. P.31-37; Panacek A., Kvitek L., Prucek R. et al. J. Phys. Chem. B. 2006. V.110. №33. P.16248-16253; Афиногенов Г.Е, Копейкин В.В, Панарин Е.Ф. РФ №2128047, A61K 31/79, 33/38, 27.03.1999].
Последнее из указанных технических решений является наиболее близким по сущности и достигаемому результату.
Существенным и очевидным недостатком прототипа является необходимость проведения восстановления ионов серебра при повышенной до 65-75°C температуре в темноте в инертной атмосфере.
Технической задачей и положительным результатом заявляемой композиции и способа ее получения является получение наночастиц Ag0 при комнатной температуре при обычном освещении и без использования инертной атмосферы.
Указанная задача и результат достигаются за счет того, что в качестве восстановителя ионов серебра и стабилизатора образующихся наночастиц Ag0 используются водорастворимые синтетические сополимеры 2-диокси-2-метакриламидо-D-глюкозы (МАГ) с 2-диметиламиноэтилметакрилатом (ДМАЭМ) или 2-диэтиламиноэтилметакрилатом (ДЭАЭМ) общей формулы
где R:
в случае R1 n, m=5-95 мол.%, а для R2 n=63-95 мол.%, m=5-37 мол.%, характеристическая вязкость [η]=0,06-0,30 дл/г, при этом способ реализуют взаимодействием указанных полимеров с AgNO3 в водном растворе при комнатной температуре и естественном освещении при концентрации полимера 0,010-0,100 г/мл, концентрации AgNO3 - 0,001-0,01 г/мл.
Далее приводятся Примеры получения композиций наночастиц серебра на основе водорастворимых полимеров.
Предварительно получают исходные (со)полимеры.
Пример 1. 8,0 г 2-диокси-2-метакриламидо-D-глюкозы (МАГ), 0,16 г динитрила азо-бис-изомасляной кислоты (ДИНИЗ) растворяли в 34 мл диметилформамида (ДМФА). Радикальную полимеризацию МАГ проводили в продутой аргоном запаянной ампуле при 60°C в течение 24 часов.
Полученный полимер осаждали в диэтиловый эфир, затем низкомолекулярные примеси удаляли диализом против воды в течение 24 часов. Выход полимера составил 7,1 г (89%), характеристическая вязкость [η]=0,20 дл/г, молекулярная масса (MM) - 73000 (Таблица 1).
Примеры 2-17 выполнены в условиях примера 1.
В случае оп. 2, 3 в качестве реакционной среды использовали воду и изопропиловый спирт соответственно. В оп.2 инициатором полимеризации служила смесь (NH4)2S2O8 + тетраметилэтилендиамин (ТМЕДА). В оп.2, 3 не проводилось высаждение полимеров, по окончании полимеризации реакционную смесь подвергали диализу против воды, а затем лиофильной сушке.
Условия синтеза и характеристики полученных (со)полимеров представлены в таблице 1.
Далее получают композиции наночастиц серебра на основе полученных водорастворимых (со)полимеров.
Результаты приведены в Таблице 2 (оп.18-34).
В качестве Примера приводится оп.24 (Таблица 2).
Пример 24. К раствору 0,24 г сополимера МАГ:ДМАЭМ (оп.7, Табл.1) в 11,5 мл дистиллированной воды при комнатной температуре и перемешивании добавляли 0,47 мл 0,3 М водного раствора AgNO3, концентрация полимера составила спол=0,020 г/мл, концентрация AgNO3 - сAgNO3=0,002 г/мл. В момент смешения компонентов появлялась красно-коричневая окраска раствора, а в спектре поглощения - полоса плазменного резонанса, характерная для наночастиц серебра, λмакс=417 нм, интенсивность которой возрастала во время реакции. Через 3 часа интенсивность полосы перестала изменяться, проба хлоридом натрия подтвердила отсутствие ионов серебра в растворе. Композицию подвергали диализу против воды в течение 24 часов, затем лиофильно сушили.
Примеры 18-23 и 25-34 выполнены в условиях примера 24.
Время начала реакции, тестируемое по появлению полосы плазменного резонанса и окраски раствора, и время окончания реакции (прекращение роста интенсивности полосы в области 400-440 нм, отрицательная проба на ионы серебра в присутствии хлорида натрия) зависели от структуры (со)полимера.
Растворы полученных нанокомпозитов стабильны по крайней мере в течение шести месяцев (время наблюдения).
название | год | авторы | номер документа |
---|---|---|---|
ФОТОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ СТАБИЛИЗИРОВАННЫХ НАНОЧАСТИЦ СЕРЕБРА | 2014 |
|
RU2569546C1 |
Способ получения полимер-композитного состава, содержащего наночастицы меди, и полимер-композитный состав, полученный этим способом | 2016 |
|
RU2646465C2 |
Нанокомпозит серебра на основе конъюгата арабиногалактана и флавоноидов, обладающий антимикробным и противоопухолевым действием, и способ его получения | 2015 |
|
RU2611999C2 |
ВОДОРАСТВОРИМЫЕ ПОЛИМЕРЫ, СОДЕРЖАЩИЕ ВИНИЛЬНУЮ НЕНАСЫЩЕННОСТЬ, ИХ СШИВАНИЕ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2004 |
|
RU2361884C2 |
Способ получения серебросодержащего целлюлозного текстильного материала | 2023 |
|
RU2808797C1 |
Водорастворимые сополимеры винилфосфоновой кислоты | 2022 |
|
RU2788168C1 |
Способ получения водных растворов наночастиц серебра с природным восстановителем | 2016 |
|
RU2618270C1 |
КОЛЛОИДНЫЙ РАСТВОР НАНОЧАСТИЦ МЕТАЛЛА, НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛИМЕР И СПОСОБЫ ИХ ПОЛУЧЕНИЯ | 2002 |
|
RU2259871C2 |
КОМПОЗИЦИЯ В КАЧЕСТВЕ БАКТЕРИЦИДНОГО СРЕДСТВА, СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ЕЕ ОСНОВЕ И МАКРОПОРИСТЫЙ БАКТЕРИЦИДНЫЙ МАТЕРИАЛ НА ОСНОВЕ ДАННОЙ КОМПОЗИЦИИ | 2009 |
|
RU2404781C1 |
ВЫДЕЛЯЕМЫЕ И ПЕРЕДИСПЕРГИРУЕМЫЕ НАНОЧАСТИЦЫ ПЕРЕХОДНЫХ МЕТАЛЛОВ, ИХ ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ В КАЧЕСТВЕ ИК-ИЗЛУЧАТЕЛЕЙ | 2008 |
|
RU2494838C2 |
Изобретение относится к способу получения композиций наночастиц серебра на основе водорастворимых синтетических сополимеров. Способ заключается в восстановлении ионов серебра в присутствии водорастворимого полимера. В качестве полимеров используют сочетающие одновременно свойства восстановителя ионов серебра и стабилизатора образующихся наночастиц, сополимеры 2-диокси-2-метакриламидо-D-глюкозы с 2-диметиламино-этилметакрилатом или 2-диэтиламиноэтилметакрилатом общей формулы
где R:
в случае R1 n, m=5-95 мол.%, а для R2 n=63-95 мол.%, m=5-37 мол.%, характеристическая вязкость [η]=0,06-0,30 дл/г. Способ реализуют взаимодействием указанных полимеров с AgNO3 в водном растворе при комнатной температуре и естественном освещении при концентрации полимера 0,010-0,100 г/мл, концентрации AgNO3 - 0,001-0,01 г/мл. Технический результат - получение наночастиц серебра при комнатной температуре при обычном освещении и без использования инертной атмосферы. 2 табл., 34 пр.
Способ получения композиций наночастиц серебра на основе водорастворимых синтетических сополимеров путем восстановления ионов серебра в присутствии водорастворимого полимера, отличающийся тем, что в качестве полимеров используют сочетающие одновременно свойства восстановителя ионов серебра и стабилизатора образующихся наночастиц сополимеры 2-диокси-2-метакриламидо-D-глюкозы с 2-диметиламино-этилметакрилатом или 2-диэтиламиноэтилметакрилатом общей формулы:
где R:
в случае R1 n, m=5-95 мол.%, а для R2 n=63-95 мол.%, m=5-37 мол.%, характеристическая вязкость [η]=0,06-0,30 дл/г, при этом способ реализуют взаимодействием указанных полимеров с AgNO3 в водном растворе при комнатной температуре и естественном освещении при концентрации полимера 0,010-0,100 г/мл, концентрации AgNO3 - 0,001-0,01 г/мл.
Авторы
Даты
2013-06-20—Публикация
2011-11-16—Подача