ПОРИСТЫЙ КАЛЬЦИЙ-ФОСФАТНЫЙ ЦЕМЕНТ Российский патент 2013 года по МПК A61L24/00 A61L24/02 

Описание патента на изобретение RU2485978C1

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Кальций-фосфатные цементы получают на основе реакционно-твердеющей порошковой смеси (РПС) двух или более фосфатов кальция и затворяющей жидкости (ЗЖ). Исходный порошок представляет смесь кислых и основных фосфатов. При добавлении в смесь ЗЖ компоненты начинают взаимодействовать между собой через жидкую фазу по механизму растворения-осаждения с образованием нейтральных (рН~7) фосфатов. В качестве исходной смеси используют смесь «кислого» (монокальцийфосфат моногидрат) и «основного» (α- или β-трикальцийфосфат) фосфатов кальция и сульфата кальция семигидрата. В качестве ЗЖ используют воду, водные растворы фосфатов щелочных металлов или магния (Moseley, et al. US Patent 8025903; Barralet et al. US Patent 7473312). При смешении смеси порошков фосфата кальция с ЗЖ образуется тестоподобная масса, которая со временем схатывается до образования прочного цементного камня, состоящего из кристаллического брушита.

Предложенные материалы могут быть использованы в качестве цементных паст для заполнения костных челюстно-лицевых и стоматологических дефектов. Кальций-фосфатные цементы, применяемые в медицине, должны обладать комплексом свойств, таких как биосовместимость, остеокондуктивность и скорость биодеградации, согласованная с процессами остеогенеза, прочность затвердевшего цемента, достаточная для несения минимальных нагрузок в процессе формирования собственной костной ткани. К достоинствам этих материалов можно отнести, во-первых, их способность заполнять дефекты самой сложной конфигурации и объема, во-вторых, малую инвазивность вмешательств, то есть возможность введения данных материалов в инъекционной форме непосредственно в зону дефекта под контролем УЗИ или рентгена без обширных оперативных вмешательств и возможность 3D фиксации.

Недостатком данных материалов является низкая пористость, не способствующая интеграции цемента с окружающей костной тканью. Отсутствие крупных взаимосвязанных пор нарушает циркуляцию жидкости внутри цементного камня, а отсутствие мелких пор резко уменьшает адгезию клеток на поверхности цемента. Наиболее близким по технической сущности и результату к предлагаемому способу является патент США №7754246 Moseley и др. Компонентами цементного порошка являются сульфат кальция семигидрат, β-трикальцийфосфат, монокальцийфосфат моногидрат. В качестве ЗЖ используют гликолевую кислоту, нейтрализованную гидроксидом натрия. При взаимодействии сульфата кальция семигидрата и ЗЖ образуется сульфат кальция дигидрат. β-трикальцийфосфат и монокальцийфосфат моногидрат реагируют между собой с образованием брушита. Брушит и сульфат кальция дигидрат образуют цементный камень. После имплантации цемента в костную ткань сульфат кальция дигидрат относительно быстро резорбируется, в результате чего формируются поры. Для увеличения прочности цемента в состав порошка вводят гранулы ТКФ. Однако авторы патента не указывают общую пористость и размер пор, в то время как эти величины наиболее важны при оценке скорости резорбции цемента. Результатом данного изобретения не является пористый цементный камень, авторы указывают, что поры в цементном камне образуются только после резорбции одного из компонентов, в то время как не ясно, сохраняется ли целостность цементного камня или он распадается на отдельные части. Пористость имплантируемого материала является одним из решающих факторов, влияющих на его остеокондуктивность.

Задачей, на решение которой направлено настоящее изобретение, является оптимизация состава цементного порошка для повышения пористости и увеличения размера пор цементного камня после твердения.

Техническим результатом предлагаемого изобретения является увеличение пористости кальций-фосфатного цемента до 40-60% при сохранении прочности на уровне 10-15 МПа.

Технический результат достигается тем, что в пористом кальций-фосфатном цементе для восстановления костных тканей, содержащем порошок β-трикальцийфосфата, монокальцийфосфата моногидрата и затворяющую жидкость, согласно изобретению, затворяющая жидкость представляет собой 7-9%-ный водный раствор лимонной кислоты, и цементный порошок дополнительно содержит гранулы карбоната кальция при следующем содержании компонентов (масс.%):

β-трикальцийфосфат 67-75 монокальцийфосфата моногидрат 20-22 гранулы карбоната кальция 3-13

Соотношение затворяющая жидкость:цементный порошок составляет 0,75.

Сущность изобретения заключается в том, что при взаимодействии лимонной кислоты, входящей в состав затворяющей жидкости, и гранул карбоната кальция, входящих в состав цементного порошка, происходит выделение газообразного углекислого газа, создающего в цементе систему взаимосвязанных пор. Образующийся в результате данного взаимодействия цитрат кальция способствует повышению прочности формирующегося цементного камня.

Уменьшение концентрации раствора лимонной кислоты ниже 7% резко снижает пористость цементного камня, в то время как увеличение концентрации лимонной кислоты выше 9% приводит к уменьшению pH цемента после схватывания до 5,5.

Увеличение по сравнению с прототипом пористости кальций-фосфатного цемента с общей пористостью 40-60% и размером пор от менее 1 мкм до 10 мкм, имеющего прочность в интервале 10-15 МПа, достигается за счет введения в состав цементного порошка 3-13% масс. гранул карбоната кальция и использования в качестве затворяющей жидкости 7-9% водного раствора лимонной кислоты.

Пример 1

4,02 г β-трикальцийфосфата смешивают с 1,32 г монокальцийфосфата моногидрата и с 0,66 г гранул карбоната кальция размером 50-100 мкм, добавляют 5,33 г 8%-ного водного раствора лимонной кислоты. Соотношение ЗЖ:П=0,75. Смешивание проводят на стекле пластиковым шпателем при 25°C в течение 5-7 мин. Образовавшуюся после смешения пастообразную массу формуют в цилиндрической форме диаметром 8 мм, через 10 мин сформованный образец извлекают из формы и помещают в термостат при 37°C и 100% влажностью на сутки. Через 24 часа образец имеет прочность при сжатии 10 МПа, открытая пористость составляет 45%, средний размер пор - 5-8 мкм.

Пример 2

4,02 г β-трикальцийфосфата смешивают с 1,32 г монокальцийфосфата моногидрата и с 0,4 г гранул карбоната кальция размером 50-100 мкм, добавляют 4,3 г 9%-ного водного раствора лимонной кислоты. Соотношение ЗЖ:П=0,75. Смешивание проводят на стекле пластиковым шпателем при 25°C в течение 5-7 мин. Образовавшуюся после смешения пастообразную массу формуют в цилиндрической форме диаметром 8 мм, через 10 мин сформованный образец извлекают из формы и помещают в термостат при 37°C и 100% влажностью на сутки. Через 24 часа образец имеет прочность при сжатии 15 МПа, открытая пористость составляет 15%, средний размер пор - 3-5 мкм. С уменьшением количества гранул карбоната кальция в цементном порошке открытая пористость уменьшается ниже заявленной.

Пример 3

4,9 г β-трикальцийфосфата смешивают с 1,05 г монокальцийфосфата моногидрата и с 1,05 г гранул карбоната кальция размером 50-100 мкм, добавляют 5,25 г 8%-ного водного раствора лимонной кислоты. Соотношение ЗЖ:П=0,75. Смешивание проводят на стекле пластиковым шпателем при 25°C в течение 5-7 мин. Образовавшуюся после смешения массу формуют в цилиндрической форме диаметром 8 мм, через 10 мин сформованный образец извлекают из формы, образец рассыпался. Увеличение количества гранул карбоната кальция приводит к увеличению pH выше 8,5, в результате чего цемент теряет пластичность и прочность.

Пример 4

4,02 г β-трикальцийфосфата смешивают с 1,32 г монокальцийфосфата моногидрата и с 0,66 г гранул карбоната кальция размером 50-100 мкм, добавляют 3,0 г 7%-ного водного раствора лимонной кислоты (соотношение ЗЖ:П=0,5). Смешивание проводят на стекле пластиковым шпателем при 25°C в течение 5-7 мин. Образовавшуюся после смешения пастообразную массу формуют в цилиндрической форме диаметром 8 мм, через 10 мин сформованный образец извлекают из формы и помещают в термостат при 37°C и 100% влажностью на сутки. Через 24 часа образец имеет прочность при сжатии менее 1 МПа, открытая пористость составляет 30%, средний размер пор - 5-8 мкм. Уменьшение соотношения ЗЖ:цементный порошок менее 0,75 приводит к резкому падению прочности цементного образца и к уменьшению пористости ниже заявленной.

Похожие патенты RU2485978C1

название год авторы номер документа
Резорбируемый пористый кальцийфосфатный цемент 2015
  • Баринов Сергей Миронович
  • Фадеева Инна Вилоровна
  • Фомин Александр Сергеевич
RU2611345C1
КАЛЬЦИЙ-ФОСФАТНЫЙ ЦЕМЕНТ ДЛЯ РЕГЕНЕРАЦИИ КОСТНОЙ ТКАНИ (ВАРИАНТЫ) 2015
  • Амелина Дарья Валериевна
  • Курдюмов Сергей Георгиевич
  • Десятниченко Константин Степанович
RU2609835C1
БРУШИТОВЫЙ ГИДРАВЛИЧЕСКИЙ ЦЕМЕНТ (ВАРИАНТЫ) 2012
  • Баринов Сергей Миронович
  • Комлев Владимир Сергеевич
  • Фадеева Инна Вилоровна
  • Тютькова Юлия Борисовна
RU2502525C2
Цемент для костной хирургии и способ его получения 2016
  • Свентская Наталья Валерьевна
  • Лукина Юлия Сергеевна
  • Зайцев Владимир Валентинович
  • Мартынов Алексей Дмитриевич
  • Ханжин Максим Сергеевич
RU2623211C1
БРУШИТОВЫЙ ЦЕМЕНТ ДЛЯ КОСТНОЙ ХИРУРГИИ 2011
  • Лукина Юлия Сергеевна
  • Сивков Сергей Павлович
  • Свентская Наталья Валерьевна
  • Белецкий Борис Иванович
RU2490031C2
Брушитовый гидравлический цемент, упрочненный пористым каркасом из полилактида 2016
  • Фадеева Инна Вилоровна
  • Фомин Александр Сергеевич
  • Филиппов Ярослав Юрьевич
  • Евдокимов Павел Владимирович
  • Баринов Сергей Миронович
  • Путляев Валерий Иванович
  • Кнотько Александр Валерьевич
RU2613182C1
КОМПОЗИЦИОННЫЙ КАЛЬЦИЙФОСФАТНЫЙ ЦЕМЕНТ ДЛЯ КОСТНОЙ ПЛАСТИКИ 2014
  • Грищенко Дина Николаевна
  • Медков Михаил Азарьевич
  • Дюйзен Инесса Валерьевна
  • Шулепин Иван Владимирович
RU2554769C1
РЕЗОРБИРУЕМЫЙ РЕНТГЕНОКОНТРАСТНЫЙ КАЛЬЦИЙ-ФОСФАТНЫЙ ЦЕМЕНТ ДЛЯ КОСТНОЙ ПЛАСТИКИ 2017
  • Медков Михаил Азарьевич
  • Грищенко Дина Николаевна
RU2643337C1
БИОСОВМЕСТИМЫЙ КОСТНОЗАМЕЩАЮЩИЙ МАТЕРИАЛ И СПОСОБ ПОЛУЧЕНИЯ ЕГО 2012
  • Полежаева Любовь Константиновна
RU2494721C1
МАТЕРИАЛ ДЛЯ ЗАПОЛНЕНИЯ КОСТНЫХ ЧЕЛЮСТНО-ЛИЦЕВЫХ И СТОМАТОЛОГИЧЕСКИХ ДЕФЕКТОВ 2005
  • Баринов Сергей Миронович
  • Смирнов Валерий Вячеславович
  • Фадеева Инна Вилоровна
  • Кубарев Олег Леонидович
RU2292865C1

Реферат патента 2013 года ПОРИСТЫЙ КАЛЬЦИЙ-ФОСФАТНЫЙ ЦЕМЕНТ

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также цементный порошок содержит гранулы карбоната кальция при следующем содержании компонентов (масс.%): β-трикальцийфосфат - 67-75, монокальцийфосфата моногидрат - 20-22, гранулы карбоната кальция - 3-13. Соотношение затворяющая жидкость: цементный порошок составляет 0,75. Кальций-фосфатные цементы характеризуются одновременно способностью к реакционному твердению, формуемостью, биосовместимостью, отсутствием токсичных побочных продуктов, а также потенциалом замещения вновь образуемой костной тканью. 4 пр.

Формула изобретения RU 2 485 978 C1

Пористый кальций-фосфатный цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата и затворяющую жидкость, отличающийся тем, что затворяющая жидкость представляет собой 7-9%-ный водный раствор лимонной кислоты, и цементный порошок дополнительно содержит гранулы карбоната кальция при следующем содержании компонентов, мас.%:
β-трикальцийфосфат 67-75 монокальцийфосфата моногидрат 20-22 гранулы карбоната кальция 3-13


соотношение затворяющая жидкость: цементный порошок составляет 0,75.

Документы, цитированные в отчете о поиске Патент 2013 года RU2485978C1

US 7754246 B2, 13.07.2010
US 6733582 B1, 11.05.2004
НЕОРГАНИЧЕСКИЙ РЕЗОРБИРУЕМЫЙ МАТЕРИАЛ ДЛЯ ЗАМЕНЫ КОСТЕЙ 2004
  • Гербер Томас
RU2354408C2

RU 2 485 978 C1

Авторы

Баринов Сергей Миронович

Комлев Владимир Сергеевич

Фадеева Инна Вилоровна

Тютькова Юлия Борисовна

Тетерина Анастасия Юрьевна

Гурин Алексей Николаевич

Даты

2013-06-27Публикация

2012-06-07Подача