Изобретение относится к способу получения материалов на основе сложного оксида Y(BaxBe1-x)2Cu3O7-δ с широким спектром электрических свойств от ВТСП до полупроводника, которые могут быть использованы в микроэлектронике; электротехнике; энергетике, например для получения пленок методами нанесения покрытий и катодного распыления мишеней из этого материала; проводников тока второго поколения; терморезисторов, а также других компонентов электронной техники.
Известны способы [1-7] получения материалов на основе сложных оксидов, в том числе керамики и покрытий из этих материалов с различными электрическими свойствами. Основными недостатками этих способов, как получения объемных материалов, так и тонких покрытий, являются использование высоких давлений, многостадийность и неполная растворимость отдельных соединений [1], необходимость длительного упаривания раствора и неоднородность получаемого продукта [2], сложность достижения стехиометрии по катионам (1:2:3) ввиду того, что оксалаты соответствующих элементов растворяются при различных pH [3, 4], необходимость промежуточной механической обработки и высоких температур [5], сложности регулирования состава раствора для химического и электрохимического осаждения ответствующих покрытий и необходимость многочасового термодиффузионного отжига при высоких температурах [6], большой размер частиц порошка [7], что не обеспечивает большую плотность керамических материалов и материала покрытий.
Кроме того, общим для всех получаемых материалов недостатком является то, что они обладают узким спектром электрических свойств.
Из известных способов получения материалов с широким спектром электрических свойств от ВТСП до полупроводника наиболее близкими по технической сущности являются материалы, описанные в [8, 9], на основе Y(BaxBe1-x)2Cu3O7-δ, где 0<x<1.
Основным и общим недостатками способов получения материалов на основе сложного оксида Y(BaxBe1-x)2Cu3O7-δ, описанных в [8, 9], является высокая дисперсность 1-10 мкм, неоднородность по составу зерен предварительно синтезированного порошка на основе соединений Y(BaxBe1-x)2Cu3O7-δ, из которого спекаются керамические материалы и покрытия, что не обеспечивает большую плотность при сравнительно низких температурах и приводит к неконтролируемым механическим напряжениям и растрескиванию образцов при спекании и отжиге.
Задача предлагаемого изобретения - получение плотных и однородных материалов с широким спектром электрических свойств на основе сложного оксида Y(BaxBe1-x)2Cu3O7-δ для изготовления компонентов электронной техники, энергетики и др.
Техническим результатом изобретения является то, что он позволяет изготавливать плотные и однородные керамические материалы, в том числе многослойные, с различными электрическими свойствами в каждом слое, на основе соединений Y(BaxBe1-x)2Cu3O7-δ, путем компактирования порошков различной дисперсности от 20 нм до 10 мкм, полученных методом сочетания химической технологии осаждения из растворов нитратов соответствующих металлов с использованием органического соединения глицина и термической обработкой от 500°С до 900°С.
Способ получения материалов на основе соединений Y(BaxBe1-x)2Cu3O7-δ, где 0≤x≤1, включающих термическое воздействие для синтеза соответствующих оксидов, отличающийся тем, что получают смеси нитратов иттрия, бария, бериллия и меди, которые обеспечивают соответствующие стехиометрические составы, с глицином, затем проводят термообработку указанной смеси, при которой процесс сжигания обеспечивает синтез при температуре 500°С и разрыхление получаемого конечного продукта; при этом получают нанопорошок с размером частиц 20-50 нм и проводят последующую термообработку порошка при температуре 500°С-900°С, в результате чего он рекристаллизуется до размеров частиц 20 нм - 10 мкм.
Нанопорошки размерами частиц ~20 нм получаются методом термообработки смесей солей иттрия, бария, бериллия и меди, обеспечивающих соответствующие стехиометрические составы, с органическим веществом - глицином, который легко и полностью сгорает и не вносит загрязнений в получаемый продукт. В процессе сжигания происходит выделение большого количества газообразных продуктов, что обеспечивает перемешивание исходных компонентов в процессе синтеза и разрыхление получаемого конечного продукта. Нанопорошки образуют агломераты в виде трубок и фигур, близких к сферам и эллипсоидам с ячеистой структурой из наночастиц размерами 20÷50 нм такой же формы. Фрактальность наблюдается в пределах каждого агломерата. Согласно рентгеноструктурным исследованиям наночастицы большей частью представляют собой кристаллическую фазу соответствующих оксидов, образующих соединение Y(BaxBe1-x)2Cu3O7-δ. По мере нагревания этих порошков, они рекристаллизуются в результате самосборки и образуют фазы соответствующих оксидов Y(BaxBe1-x)2Cu3O7-δ.
Нанопорошки с такими размерами (20-50 нм) плохо прессуются вследствие высокой текучести и образуют агломераты, которые, в свою очередь, затрудняют растворение и образование однофазных суспензий из этого порошка для получения плотных материалов.
С целью получения плотных материалов порошки подвергаются термической обработке при заданном интервале 500-900°С, в результате чего они рекристаллизуются до необходимых размеров. Порошки различных размеров от 20 нм до 10 мкм смешиваются в соотношениях, обеспечивающих минимальную насыпную плотность. Для исключения расслоения порошков порошок насыпается в пресс-форму или сосуд, в котором получают суспензию, в порядке снижения размеров частиц для последовательного заполнения пор между частицами. Текучесть при прессовании обеспечивается жидкостью, испаряющейся без остатка при сушке и спекании.
Такой способ получения материалов на основе оксида Y(BaxBe1-x)2Cu3O7-δ позволяет:
1) получать плотные сырцы керамики и слои покрытий за счет снижения насыпной плотности;
2) снизить эффект неоднородной деформации образца при спекании за счет однородного распределения материала по составу и дисперсности;
3) обеспечить однородное распределение добавок порошка ВТСП в материал с высоким омическим сопротивлением при изготовлении терморезисторов различного омического сопротивления;
4) получать материалы при сравнительно низких температурах синтеза ~ 500°С и спекания ~ 900°С.
Из вышесказанного следует, что предлагаемый способ получения материалов на основе сложных оксидов Y(BaxBe1-x)2Cu3O7-δ с широким спектром электрических свойств соответствует условиям патентоспособности.
Литература
1. Можаев А.П., Першин В.Н., Шабатин В.П. Методы синтеза высокотемпературных сверхпроводников. Журнал Всесоюзного химического общества им. Д.И. Менделеева, 1989, т.34, N4, с.504-508.
2. Punn В., Chu СТ. Zhon L.W. et al., Properties of Superconductivins oxide prepared by the amorphons citrate process, Adv. Ceram. Mater., 1987, 2, N 3B, pp.343-352.
3. Wang X.Z., Henry M., Livage J., Rosenman I. The Oxalate Route to Superconductors YBa2Cu3. Solid State Commun., 64, 881-883 (1987).
4. Патент №2019509 (Россия) от 15.09.1994, кл. C01F 17/00, «Способ получения иттрий-барий-медь оксида». Данилов В.П., Краснобаева О.Н., Носова Т.А., Кудинов И.Б., Кецко В.А., Новоторцев В.М., Филатов А.В., Волков Е.А.
5. Патент №1830396 от 23.03.89 г. «Способ получения сверхпроводящих керамических покрытий типа купратов с перовскитной структурой». Рычагов А.В., Ипатов Ю.П., Дозорцев В.Е., Сытников В.Е., Яшнов В.И.
6. Методы получения наноразмерных материалов. Курс лекций. Екатеринбург, 2007 http://elar.usu.ru/bitstream/1234.56789/1316/6/1324735_lectures.pdf.
7. Патент №2383495 от 12.12.2007 г. «Способ получения сложных металлов». Остроушко А.А.
8. Патент №2109712; рег. 27.04.98. «Сверхпроводящий оксидный материал». Палчаев Д.К., Мурлиева Ж.Х., Чакальский Б.К. и др.
9. Патент №2279729; рег. 10.06.2006. «Полупроводниковый керамический материал». Палчаев Д.К., Мурлиев А.К.
название | год | авторы | номер документа |
---|---|---|---|
Полупроводниковый наноструктурированный керамический материал | 2021 |
|
RU2761338C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ | 2015 |
|
RU2601073C1 |
СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА | 2013 |
|
RU2556181C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ МИШЕНЕЙ ДЛЯ НАНЕСЕНИЯ ТОНКИХ СВЕРХПРОВОДЯЩИХ СЛОЕВ МЕТОДОМ ЛАЗЕРНОГО ИМПУЛЬСНОГО РАСПЫЛЕНИЯ | 2023 |
|
RU2822276C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ КЕРАМИКИ | 1993 |
|
RU2090954C1 |
Получение наноструктурированных материалов на основе BaZrO | 2023 |
|
RU2808853C1 |
Изготовление градиентного керамического материала на основе YBCO с использованием плазменной обработки | 2022 |
|
RU2795949C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВОК КЕРАМИЧЕСКИХ ИЗДЕЛИЙ | 2012 |
|
RU2491253C1 |
СВЕРХПРОВОДЯЩИЙ ОКСИДНЫЙ МАТЕРИАЛ | 1995 |
|
RU2109712C1 |
Способ изготовления магнитооптической керамики на основе оксида тербия из нанопорошка, синтезированного лазерным распылением мишени | 2021 |
|
RU2773727C1 |
Изобретение относится к способу получения материалов на основе сложного оксида Y(BaxBe1-x)2Cu3O7-δ с широким спектром электрических свойств от высокотемпературных сверхпроводников до полупроводников, которые могут быть использованы в микроэлектронике; электротехнике; энергетике, например для получения пленок методами нанесения покрытий и катодного распыления мишеней из этого материала; проводников тока второго поколения; терморезисторов. Способ включает получение смесей нитратов иттрия, бария, бериллия и меди, обеспечивающих соответствующие стехиометрические составы, с глицином, термообработку указанной смеси при температуре 500°С, при которой процесс сжигания обеспечивает синтез и разрыхление получаемого конечного продукта: нанопорошка с размером частиц 20-50 нм. Синтезированный порошок термообрабатывают при температуре 500-900°С, в результате чего он рекристаллизуется до размеров частиц 20 нм - 10 мкм. Преимуществом данного метода является: возможность однородного распределения материала по составу, приводящего к снижению эффекта неоднородной деформации образца при спекании и достижению широкого спектра электрических свойств сложного оксида Y(BaxBe1-x)2Cu3O7-δ, а также получения плотных сырцов керамики и слоев покрытий.
Способ получения материалов на основе соединений Y(ВахВе1-x)2Cu3O7-δ, где 0≤x≤1, включающий термическое воздействие для синтеза соответствующих оксидов, отличающийся тем, что получают смеси нитратов иттрия, бария, бериллия и меди, которые обеспечивают соответствующие стехиометрические составы, с глицином, затем проводят термообработку указанной смеси, при которой процесс сжигания обеспечивает синтез при температуре 500°С и разрыхление получаемого конечного продукта; при этом получают нанопорошок с размером частиц 20-50 нм и проводят последующую термообработку порошка при температуре 500-900°С, в результате чего он рекристаллизуется до размеров частиц 20 нм - 10 мкм.
ГИДРОВИНТОВОЙ ПРЕСС | 0 |
|
SU306974A1 |
СВЕРХПРОВОДЯЩИЙ ОКСИДНЫЙ МАТЕРИАЛ | 1995 |
|
RU2109712C1 |
Колосоуборка | 1923 |
|
SU2009A1 |
ПОЛУПРОВОДНИКОВЫЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ | 2004 |
|
RU2279729C2 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ КЕРАМИЧЕСКИХ ПОКРЫТИЙ СОСТАВА YBaCuO | 1991 |
|
RU2030817C1 |
RU 2058958 C1, 27.04.1996. |
Авторы
Даты
2013-06-27—Публикация
2010-12-13—Подача