СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА Российский патент 2015 года по МПК B22F9/00 B82B3/00 C04B35/45 

Описание патента на изобретение RU2556181C2

Изобретение относится к способу получения нанопорошков на основе феррита висмута для создания магнитоэлектрических материалов - мультиферроиков и компонентов электронной техники, которые могут найти широкое применение в микроэлектронике, в частности спиновой электронике (спинтронике); в сенсорной и СВЧ-технике; в устройствах для записи, считывания и хранения информации и др.

Известны способы [1-11] получения нанопорошков на основе феррита висмута. Основными недостатками этих способов, описанных в [1-9], являются высокие температуры синтеза, необходимость дополнительной обработки продуктов в ходе получения прекурсора и его вспышки, многофазность полученных порошков, наличие дефектов структуры нанокристаллов и необходимость дополнительных процедур для исключения этих недостатков после получения продукта в результате сжигания соответствующих прекурсоров. Из известных способов получения нанопорошков наиболее близкими по технической сущности являются материалы, описанные в [10-12].

В [12] приводится технология получения нанопорошков на основе сложных оксидов Y(BaxBe1-x)2Cu3O7-δ методом сжигания глицин нитратных прекурсоров соответствующих металлов. Метод получения нанопорошка сложных оксидов Y(BaxBe1-x)2Cu3O7-δ в [9] реализуется следующим способом: готовится водный раствор нитратов, содержащий эквимолярные количества соответствующих металлов. В полученный раствор добавляется глицин в количестве рассчитанной по окислительно-востановительной реакции для получения соответственного сложного оксида. Раствор выпаривается до получения сухого стекловидного состояния. Сжигание полученного продукта производится небольшими порциями, сбрасываемыми в круглодонную колбу, раскаленную до 500°C. Это обеспечивает полное его сжигание после вспыхивания и уменьшение потерь нанопорошка, выстреливаемого при вспыхивании.

В [10] приводится технология получения нанопорошков на основе феррита висмута, суть которой в том, что вводные растворы нитратов соответствующих металлов, которые получают добавлением азотной кислоты, в качестве окислителя, осаждают добавлением винной кислоты. Затем выпаривают. Высушенный осадок подвергают термической обработке при температуре 450-600°C в течение 2 часов. Затем подбираются среды и температуры отжига для получения однофазного поликристаллического порошка. Метод получения нанопорошка феррита висмута в [8] реализуется следующим способом: эквимолярные количества (0,01 М) Bi(NO3)3·5H2O и Fe(NO3)3-9H2O сначала растворяются в разбавленной азотной кислоте с образованием прозрачного раствора. К раствору добавляется винная кислота в молярном соотношении 1:1 по отношению к нитратам металлов. Раствор нагревают при 150-160°C при постоянном перемешивании, до получения пушистого зеленого осадка. Полученный осадок фильтруют, сушат и нагревают при различных температурах (450-600°C) в течение 2 часов. Аморфный нанопорошок выдерживают при температурах ~600°C, длительное время, до его перехода полностью в нанокристаллическое состояние. Это важно, поскольку только нанокристаллическая фаза BiFeO3, наряду с сегнетоэлектрическими, обладает ферромагнитными свойствами. Для достижения однофазного состава BiFeO3 выдержку при этой температуре осуществляют в среде кислорода.

Наиболее близким из выбранных аналогов является способ, описанный в [11], суть которого в том, что в вводные растворы нитратов соответствующих металлов добавляют глицин в качестве топлива и подкисляют щавелевой либо уксусной кислотой, при получении BiFeO3 из предварительно смешанных оксидов Bi2O3 и Fe2O3 в соотношении 1:1 добавляется азотная кислота, для получения нитратов соответствующих металлов и дополнительно подкисляют уксусной кислотой. Растворы (предварительно смешивают, если они представляют собой вводные растворы нитратов отдельных металлов) выпаривают нагревателем мощностью 800 ватт до получения сухого прекурсора, нагревание которого в течение 10-20 секунд приводит к вспышке и образованию порошка из наночастиц. Полученный порошок брикетируют и подвергают термообработке в микроволновой печи, а затем закалке, чтобы получить частицы чистого BiFeO3 одинакового размера.

Недостатком метода из [12] является то, что он не позволяет получить непосредственно однофазный феррит висмута.

Недостатками метода из [10] является то, что при осаждении раствора не может быть достигнута однородность из-за различной растворимости солей винной кислоты железа и висмута, необходимость выбора среды и температуры для термической обработки и многоэтапность этой обработки в целях получения однофазного порошка.

Недостатком метода из [11] является то, что растворы подкисляются щавелевой или уксусной кислотой, при этом для формирования необходимого нанокристаллического порошка BiFeO3 полученный продукт после вспышки высушенного прекурсора подвергается брикетированию и термообработке (нагреванию и закалке), т.е. недостаток способа в многоэтапности процедуры в целях получения однофазного нанокристаллического порошка необходимого размера. Кроме того, требуется дополнительно оптимизация таких параметров, как скорость и время нагревания, а также максимальная температура продукта, содержащего соединение BiFeO3. Несоблюдение соответствующих оптимальных параметров может привести к рекристаллизации нанокристаллического порошка BiFeO3, снижая положительный эффект, достигаемый в результате получения BiFeO3 в виде наночастиц, обладающих ферромагнетизмом в отличие от частиц дисперсностью выше 62 нм, обладающих антиферромагнетизмом.

Задача предлагаемого изобретения - получение чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута, со строгой стехиометрией в один этап, без дополнительной обработки продуктов в ходе получения прекурсора и его вспышки, для изготовления материалов и компонентов электронной техники.

Техническим результатом изобретения является то, что он позволяет повысить эффективность и снизить энергозатраты при изготовлении чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута, со строгой стехиометрией, путем нагревания, с различными скоростями, содержащего глицин раствора нитратов соответствующих металлов разной насыщенности.

Сущность предлагаемого изобретения заключается в том, что способ получения однофазного нанокристаллического порошка феррита висмута BiFeO3 с ферромагнитными свойствами включает: получение рассчитанных количеств смесей нитрата висмута Bi(NO3)3 с глицином и нитрата железа Fe(NO3)3 с глицином, добавление в них воды и кислоты с получением растворов, смешивание полученных растворов, выпаривание, нагрев до температуры вспышки и синтез с получением порошка, отличающийся тем, что в качестве кислоты в смесь нитратов добавляют азотную кислоту, выпаривание проводят до плотности 1,14-1,16, нагрев до температуры вспышки осуществляют со скоростью 10-30 град/мин.

Способ получения чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута осуществляется следующим образом:

1. Рассчитываются массы Bi(NO3)3 и Fe(NO3)3, необходимые для получения массы 30 граммов нанопорошка BiFeO3.

2. Рассчитывается масса глицина, необходимого для комплексообразования с Bi(NO3)3 и Fe(NO3)3, по реакции

Bi(NO3)3+3NH2-СН2-СООН→Bi(OOCCH2NH2)3+3HNO3

Fe(NO3)3+3NH2-СН2-СООН→Fe(OOCCH2NH2)3+3HNO3

3. В рассчитанную массу Bi(NO3)3 - 37,84 г добавляется 350 мл воды (выпадает белый осадок). В этот раствор добавляется глицин (42,10 г) до полного растворения осадка и концентрированная азотная кислота (25 мл).

4. В рассчитанную массу Fe(NO3)3 - 23,16 г добавляется 100 мл воды. В этот раствор добавляется рассчитанная масса глицина (21,53 г).

5. Растворы смешиваются, смесь выпаривается до плотности 1,4-1,6, а затем нагревается до температуры вспышки со скоростью 10-30 град/мин.

В результате многократных проб был получен положительный результат - однородный по составу и дисперсности нанопорошок соединения BiFeO3 при соблюдении следующих технологических параметров.

Пример 1. Образец 3.

Раствор выпаривается до плотности в пределах 1,14÷1,16. Полученный раствор нагревается со скоростью 10÷30 град/мин. Температура вспышки 150÷200°C; температура горения 500÷600°C;

На рис. 1 приведены дифрактограмма и фазовая диаграмма образца. Как видно из рис. 1, при получении нанопорошка по вышеуказанной технологии образуется одна фаза феррита висмута BiFeO3 - синий цвет.

На рис. 1 представлена дифрактограмма образца 3 с совпадениями пиков BiFeO3 из базы данных PAN-ICSD и фазовая диаграмма с содержанием фаз Phase Bismuth Ferrate (III): Weight fraction/%: 100.0.

В результате исследования на дифрактометре PANalytical Empyrean series 2 установлено, что размеры частиц составляют в среднем ≥35 нм. На рис. 2 представлена морфология этого порошка, исследованного на сканирующем зондовом микроскопе LEO-1450 с EDX-анализатором INCA Energy, на котором видно, что нанопорошок представляет собой агломераты, состоящие из наночастиц.

Пример 2. Образец 4.

Раствор выпаривается до плотности в пределах 1,14÷1,16. Полученный раствор нагревается со скоростью 100÷200 град/мин. Температура вспышки 200÷300°C; Температура горения 700÷800°C.

Как видно из рисунка 3, при получении нанопорошка по вышеуказанной технологии получается многофазный образец, состоящий из фаз, выделенных разными цветами: Bi2O3-β - 20% синим цветом, Bi - 16% зеленым цветом, BiFeO3 - 16% серым цветом, Fe3O4 - 48% красным цветом. На рисунке 4 приведена морфология полученного нанопорошка.

На рис 3. представлена дифрактограмма образца 4 с совпадениями пиков BiFeO3 из базы данных PAN-ICSD db и фазовая диаграмма с содержанием фаз.

Phase Bismuth Oxide - Beta:

Weight fraction/% 20.0 синий

Phase Bismuth:

Weight fraction/% 16.0 зеленый

Phase Bismuth Iron (III) Oxide:

Weight fraction/% 16.0 серый

Phase Iron Oxide (3/4):

Weight fraction/% 48.0 красный

Пример 3. Образец 1.

Раствор выпаривали до кристаллического состояния. Высокая гигроскопичность кристаллов не позволяла довести их до сухого состояния. Нагрев небольших количеств этого прекурсора со скоростями 100÷200 град/мин приводил к вспыхиванию при температурах 150÷200°C; температура горения 500÷600°C;

Образец получается многофазный, как показано на рисунке 5, состоящий из следующих фаз: BiFeO3 - 28% выделено синим цветом; Bi2O3-β - 31% зеленым цветом; Bi2O3 - 17% серым цветом, Fe3O4 - 24% красным цветом.

На рисунке 6 приведена морфология полученного нанопорошка (образец 1).

На рис. 5 представлена дифрактограмма образца 1 с совпадениями пиков BiFeO3 из базы данных PAN-ICSD и фазовая диаграмма с содержанием фаз.

Phase Bismuth Ferrate (III):

Weight fraction/% 28.0 синий

Phase Bismuth Oxide - Beta:

Weight fraction/% 31.0 зеленый

Phase Bismuth Oxide:

Weight fraction/% 17.0 серый

Phase Magnetite:

Weight fraction/% 24.0 красный

Пример 4. Образец 2.

Раствор выпаривали до кристаллического состояния. Нагрев больших количеств этого прекурсора со скоростями 100÷200 град/мин приводил к вспыхиванию при температурах 200÷300°C; температура горения 500÷800°C по объему; при меньших скоростях нагрева вспыхивали отдельные части образца, процесс горения затягивался, а конечный продукт получался неоднородным.

На рис. 7 представлена дифрактограмма образца 2 с совпадениями пиков BiFeO3 из базы данных PAN-ICSD db и фазовая диаграмма с содержанием фаз.

Phase Sillenite:

Weight fraction/% 28.0 синий

Phase Hematite:

Weight fraction/% 47.0 зеленый

Phase Bismuth Iron (III) Oxide:

Weight fraction/% 19.0 серый

Phase Bismuth Oxide:

Weight fraction/% 7.0 красный

Образец также получается многофазный, как показано на рисунке 7, состоящий из следующих фаз: Bi2O3 - 28% выделено синим цветом; Fe2O3 - 47% зеленым цветом; BiFeO3 - 19% серым цветом; Bi2O3 - 7% красным цветом.

На рисунке 8 приведена морфология полученного нанопорошка (образец 2).

Преимуществами предложенного способа являются:

1. Получение непосредственно однофазного феррита висмута в нанокристаллическом состоянии.

2. Чистота и однородность.

3. Низкие температуры синтеза.

4. Экспрессность за счет получения продукта за один этап синтеза без необходимости дополнительной обработки продуктов в ходе получения прекурсора и его вспышки.

Литература

1. Chen Z, Zhan G, Не Xin, Yang Hu, Wu Нао (2011) Low-temperature preparation of bismuth ferrite microcrystals by a sol-gel-hydrothermal method. Cryst Res Technol 46: 309-314.

2. Cheng ZX, Li AH, Wang XL, Dou SX, Ozawa K, Kimura H, Zhang SJ, Shrout TR (2008) Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite. J Appl Phys 103: 07E507.

3. Ferri EAV, Santos IA, Radovanovic E, Bonzanini R, Girotto EM (2008) Chemical characterization of BiFeO3 obtained by Pechini method. J.

4. Kim JK, Kim SSu, Kim WJ (2005) Sol-gel synthesis and properties of multiferroic BiFeO3. Mater Lett 59: 4006-4009.

5. Kumar MM, Palker VR, Srinivas K, Suryanarayana SV (2000) Ferroelectricity in a pure BiFeO3 ceramics. Appl Phys Lett 76: 2764.

6. Luo W, Wang D, Wang F, Liu T, Cai J, Zhang L, Liu Y (2009) Room-temperature simultaneously enhanced magnetization and electric.

7. Shetty S, Palkar VR, Pinto R (2002) Size effect study in mag-netoelectric BiFeO3 system. Pramana J Phys 58: 1027-1030.

8. CN 102627452 A (HARBIN INST TECHNOLOGY), 08.08.2012.

9. CN 102838356 A (SHANGHAI TITANOS INDASRY CO LTD), 26.12.2012.

10. Alina Manzoor, Hasanain S.K., Mumtaz A., Bertino M.F., Franzel L. Effects of size and oxygen annealing on the multiferroic behavior of bismuth ferrite nanoparticles // J Nanopart Res (2012) 14: 1310.

11. CN 101269842 A (INST ELECTRICAL ING CAS), 24.09.2008.

12. M.X. Рабаданов, Д.К. Палчаев, Ш.Ш. Хидиров, Мурлиева Ж.Х., и др. Способ получения материалов на основе Y(BaxBe1-x)2Cu3O7-δ. // Патент №2486161, Бюл. №18, 27.06.2013.

Похожие патенты RU2556181C2

название год авторы номер документа
Способ получения нанопорошка феррита висмута 2016
  • Алиханов Нариман Магомед-Расулович
  • Палчаев Даир Каирович
  • Рабаданов Муртазали Хулатаевич
  • Мурлиева Жарият Хаджиевна
  • Садыков Садык Абдулмуталибович
  • Эмиров Руслан Мурадович
RU2641203C2
Получение керамики феррита висмута с высоким содержанием стехиометрического состава 2023
  • Палчаев Даир Каирович
  • Шапиев Гусейн Шапиевич
  • Рабаданов Муртазали Хулатаевич
  • Буш Александр Андреевич
  • Мурлиева Жарият Хаджиевна
  • Алиханов Нариман Магомед-Расулович
  • Гаджимагомедов Султанахмед Ханахмедович
  • Эмиров Руслан Мурадович
RU2816609C1
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОПОРОШКА НИКЕЛЬ-ЦИНКОВОГО ФЕРРИТА 2023
  • Мартинсон Кирилл Дмитриевич
  • Сахно Дарья Дмитриевна
  • Беляк Владислав Евгеньевич
  • Попков Вадим Игоревич
RU2813525C1
Способ получения порошков фаз твёрдых растворов системы 0,75BiFeO-0,25Ba(ZrTi)O, легированных соединениями марганца 2022
  • Нестеров Алексей Анатольевич
  • Панич Александр Анатольевич
  • Толстунов Михаил Игоревич
  • Казакова Арина Владимировна
RU2787492C1
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОГО ПОРОШКА ЛИТИЙ-ЦИНК-МАРГАНЦЕВОГО ФЕРРИТА 2021
  • Мартинсон Кирилл Дмитриевич
  • Иванов Андрей Александрович
  • Пантелеев Игорь Борисович
  • Попков Вадим Игоревич
RU2768724C1
Способ получения композиционных покрытий на основе ферритов висмута на поверхности стали 2022
  • Храменкова Анна Владимировна
  • Финаева Ольга Александровна
RU2782944C1
Технология создания магнитоуправляемого мемристора на основе нанотрубок диоксида титана 2021
  • Гаджимагомедов Султанахмед Ханахмедович
  • Рабаданова Аида Энверовна
  • Рабаданов Муртазали Хулатаевич
  • Палчаев Даир Каирович
  • Мурлиева Жарият Хаджиевна
  • Эмиров Руслан Мурадович
  • Алиханов Нариман Магомед-Расулович
  • Сайпулаев Пайзула Магомедтагирович
RU2756135C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИТИЙ-ЦИНК-МАРГАНЦЕВОЙ ФЕРРИТОВОЙ КЕРАМИКИ 2023
  • Мартинсон Кирилл Дмитриевич
  • Сахно Дарья Дмитриевна
  • Беляк Владислав Евгеньевич
  • Беляева Ирина Дмитриевна
  • Беляева Анна Дмитриевна
RU2817713C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА СЛОЖНОГО ОКСИДА ВИСМУТА, ЖЕЛЕЗА И ВОЛЬФРАМА СО СТРУКТУРОЙ ФАЗЫ ПИРОХЛОРА 2023
  • Ломакин Макарий Сергеевич
  • Проскурина Ольга Венедиктовна
  • Гусаров Виктор Владимирович
RU2825757C1
Способ получения нанопорошков феррита висмута 2019
  • Абиев Руфат Шовкет Оглы
  • Проскурина Ольга Венедиктовна
  • Гусаров Виктор Владимирович
RU2748446C2

Иллюстрации к изобретению RU 2 556 181 C2

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ ОДНОФАЗНОГО НАНОПОРОШКА ФЕРРИТА ВИСМУТА

Изобретение относится к способу получения нанопорошков на основе феррита висмута для создания магнитоэлектрических материалов - мультиферроиков и компонентов электронной техники, которые могут найти широкое применение в микроэлектронике, в частности спиновой электронике (спинтронике); в сенсорной и СВЧ-технике; в устройствах для записи, считывания и хранения информации и др. Задача предлагаемого изобретения - получение чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута, со строгой стехиометрией в один этап - для изготовления материалов и компонентов электронной техники. Техническим результатом изобретения является то, что он позволяет повысить эффективность и снизить энергозатраты при изготовлении чистых однородных по дисперсности нанокристаллических порошков на основе феррита висмута, со строгой стехиометрией, путем нагревания, с различными скоростями, содержащего глицин раствора нитратов соответствующих металлов разной насыщенности. Преимуществами предложенного способа являются: получение непосредственно однофазного феррита висмута; чистота и однородность; низкие температуры синтеза; экспрессность за счет получения продукта за один этап синтеза. 8 ил.

Формула изобретения RU 2 556 181 C2

Способ получения однофазного нанопорошка феррита висмута BiFeO3, включающий получение рассчитанных количеств смесей нитрата висмута Bi(NO3)3 с глицином и нитрата железа Fe(NO3)3 с глицином, добавление в них воды и кислоты с получением растворов, смешивание полученных растворов, выпаривание, нагрев до температуры вспышки и синтез с получением порошка, отличающийся тем, что в качестве кислоты в смесь нитратов добавляют азотную кислоту, выпаривание проводят до плотности 1,14-1,16, а нагрев до температуры вспышки осуществляют со скоростью 10-30 град/мин.

Документы, цитированные в отчете о поиске Патент 2015 года RU2556181C2

CN 101269842 A, 24.09.2008
СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛОВ НА ОСНОВЕ Y(ВаВе)CuO 2010
  • Рабаданов Муртазали Хулатаевич
  • Палчаев Даир Каирович
  • Хидиров Шагабудин Шайдабекович
  • Мурлиева Жарият Хаджиевна
  • Самудов Шамсудин Магомедович
  • Ахмедов Шихжинет Владимирович
  • Асваров Абил Шамсудинович
RU2486161C2
CN 102627452 A, 08.08.2012
CN 102838356 A, 26.12.2012
MANZOOR A
at al, Effects of size and oxygen annealing on the multiferroic behavior of bismuth ferrite nanoparticles
J Nanopart Res, 2012

RU 2 556 181 C2

Авторы

Рабаданов Муртазали Хулатаевич

Палчаев Даир Каирович

Ахмедов Шихжинет Владимирович

Фараджева Мислимат Пиралиевна

Мурлиева Жарият Хаджиевна

Каллаев Сулейман Нурулисламович

Садыков Садык Абдулмуталибович

Даты

2015-07-10Публикация

2013-10-30Подача