СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ НЕКОНСОЛИДИРОВАННЫХ ПОРИСТЫХ СРЕД Российский патент 2013 года по МПК G01N23/04 G01N15/08 

Описание патента на изобретение RU2486495C1

Изобретение относится к области исследования образцов неконсолидированных пористых сред и может быть использовано для изучения открытой или закрытой пористости, распределения пор по размерам, удельной поверхности, пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений и т.д.

Большинство методов исследования свойств пористых структур, в частности петрофизических свойств горных пород, разработано для консолидированных материалов (В.М.Добрынин, Б.Ю.Вендельштейн, Д.А.Кожевников, Петрофизика (физика горных пород), М.: "Нефть и газ" РГУ нефти и газа им. И.М.Губкина, 2004 год. - 368 с. ISBN 5-7246-0295-4; Гудок Н.С., Богданович Н.Н., Мартынов В.Г. Определение физических свойств нефтеводосодержащих пород, М.: ООО «Недра-Бизнесцентр», 2007 год. - 592 с. ISBN 978-5-8365-0298-0). Для исследования слабосцементированных пород требуется специальное оборудование и модификация известных методов, чтобы во время измерений сохранялись структура порового пространства и объем образца (US Pat. 4587857, Method for mounting poorly consolidated core samples). Часто возникает необходимость пропитывания образцов специальными растворами, которые, застывая, цементируют поровое пространство, однако при этом возможно нарушение исходного строения и изменение свойств (US Pat. 3941191, Method of consolidating unconsolidated or insufficiently consolidated formations). Известны также и методы исследования, предусматривающие предварительное низкотемпературное замораживание образцов неконсолидированных пористых сред (см., например, O.Torsaeter, The effect of freezing of slightly consolidated cores, SPE Formation Evaluation, 1987, v.2, N3, p.357-360). В дальнейшем для исследования макро и микростроения органоминерального скелета замороженные образцы неконсолидированных пористых сред подвергаются вакумной сублимации. Однако при этом теряется информация о поровых флюидах, кроме того, сублимированные образцы неконсолидированных сред могут деформироваться и рассыпаться, что ведет к неточностям характеристик порового пространства.

Для идентификации органоминерального скелета, порового пространства и замороженных поровых флюидов (ледяных образований, газовых гидратов) предлагается метод улучшения их контрасности, что позволяет производить расчеты характеристи пористого материала и оценки пространственного распределения и концентрирования льда и/или газовых гидратов в поровом пространстве с помощью анализа рентгеновских изображений.

В соответствии с заявленным способом исследования образцов неконсолидированных пород образец предварительно замораживают, в условиях отрицательной температуры приводят в контакт с замороженным раствором рентгеноконтрастного агента, по окончании насыщения образца проводят компьютерную рентгеновскую микротомографию образца при отрицательных температурах и определяют петрофизические характеристики и пространственное распределение, концентрацию ледяных и/или газогидратных включений путем анализа полученного компьютерного томографического изображения.

В качестве рентгеноконтрастного агента используют водорастворимое соединение, в состав которого входит химический элемент, обладающий высокой степенью ослабления рентгеновского излучения.

В качестве химического элемента, обладающего способностью ослаблять рентгеновское излучение, используют элемент с большим атомным весом, а водорастворимое соединение представляет собой его соль или оксид.

В качестве элемента с большим атомным весом может быть использован тяжелый металл из группы Pb, Ba, Sr, Ra и др.

Контакт образца с замороженным раствором рентгеноконтрастного агента осуществляют при температуре ниже температуры фазового перехода лед-вода, то есть плавления льда в образце, предпочтительно от -7°C до -10°C.

Предварительно исследуемый образец мерзлых пород и замороженный раствор рентгеноконтрастного агента могут быть выдержаны при температуре от -7°C до -10°C до стабилизации температуры по образцу.

Компьютерную рентгеновскую микротомографию образца проводят в услових отрицательной температуры, во избежание плавления льда/газогидрата в поровом пространстве, предпочтительно при температуре -7°C до -10°C.

Изобретение поясняется фиг.1, где приведен фрагмент изображения 2-мерного среза 3-мерной цифровой модели неконсолидиррованного речного песка, сцементированного льдом. Изображение получено с помощью эксперимента по рентгеновской микротомографии проводимой при температуре -10°C. Данное изображение получено с применением рентгеноконтрастного агента.

В основе метода рентгеновской микротомографии лежит реконструкция пространственного распределения линейного коэффициента ослабления (ЛКО) рентгеновского излучения в тонких слоях исследуемого образца с помощью компьютерной обработки проекции рентгеновских лучей в различных направлениях вдоль исследуемого слоя.

Величина ЛКО в каждом материале зависит от химического состава, плотности вещества и от энергии излучения:

µ=µmρ,

µm - массовый коэффициент затухания под воздействием рентгеновского излучения (см2/г), ρ - плотность (г/см3).

Заявленное изобретение основано на эффекте диффузии ионов водорастворимых соединений элементов, обладающих способностью ослаблять рентгеновское излучение (например, солей тяжелых металлов), по твердой фазе льда/гидрата в поровом пространстве пород при низких температурах, что обеспечивает улучшение контраста при проведении рентгеновской микротомографии при низких (отрицательных) температурах льда/гидрата.

Подходящими рентгеноконтрастными агентами являются водорастворимые соединения, содержащие элементы с большим атомным номером, например соли тяжелых металлов (Pb, Ba, Sr, Ra и т.д.). В качестве соли тяжелого металла выбирают растворимую соль в соответствии с таблицей растворимости неорганических веществ в воде. Такими солями могут быть: Pb(NO3)2, BaCl2 и др.

В примере реализации изобретения для улучшения рентгеновского контраста льда/газогидрата в поровом пространстве породы использовался замороженный 1% раствор Pb(NO3)2 в качестве источника ионов свинца для диффузии по твердой фазе льда/газогидрата при отрицательных температурах.

Насыщение льда солью металлов ведет, например, к понижению температуры фазового перехода лед-вода, что в свою очередь может приводить к таянию образца при температурах ниже 0°C (фазового перехода лед-вода для дистиллированной воды при нормальном давлении). С другой стороны, при понижении температуры скорость дифузии ионов в образец замедляется, что ведет к увеличению времени контакта для насыщения образца ионами. В общем случае температура при контакте образца с замороженным раствором должна быть меньше температуры фазового перехода лед-вода или газогидрат/вода в образце.

Образец неконсолидированной пористой среды и приготовленный 1% раствор Pb(NO3)2 замораживают при температуре -15°C - -20°C, после чего замороженный раствор и замороженный образец переносят в холодильную камеру с температурой около -7°C, где они выдерживаются до стабилизации температуры. После этого образец устанавливают на замороженный раствор, т.е. осуществляют их непосредственный контакт. Образец в контакте с замороженным раствором выдерживают при изотермических условиях (температура постоянная около -7°C) в течение 7 дней. За это время происходит диффузионное насыщение образца мерзлых пород ионами тяжелого металла. По окончании насыщения контакт образца с замороженным раствором зачищается и образец готов для сканирования на рентгеновском томографе при отрицательных температурах.

Проводят исследование образца с помощью низкотемпературной приставки (Cooling stage, http://www.skyscan.be/products/stages.htm) на рентгеновском микротомографе. Образец сканировался при температуре около -10°C, чтобы избежать таяния льда.

Результатом сканирования является 3-х мерная цифровая модель керна, анализ которой позволяет определить петрофизические характеристики неконсолидированной горной породы, а также распределения льда/газогидрата в поровом пространстве и т.д.

Похожие патенты RU2486495C1

название год авторы номер документа
СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ МЕРЗЛЫХ ПОРОД 2011
  • Надеев Александр Николаевич
  • Чувилин Евгений Михайлович
  • Попова Ольга Владимировна
RU2482465C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ В КЕРНОВОМ МАТЕРИАЛЕ ЭФФЕКТИВНОГО ПОРОВОГО ПРОСТРАНСТВА 2014
  • Рощин Павел Валерьевич
  • Петраков Дмитрий Геннадьевич
  • Стручков Иван Александрович
  • Литвин Владимир Тарасович
  • Васкес Карденас Луис Карлос
RU2548605C1
Способ исследования пространственного распределения нефти в поровом пространстве грунтов и других пористых сред 2017
  • Парфенов Виталий Григорьевич
  • Заватский Михаил Дмитриевич
  • Никифоров Артур Сергеевич
  • Пономарев Андрей Александрович
RU2654975C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ И КОНЦЕНТРАЦИИ КОМПОНЕНТА В ПОРОВОМ ПРОСТРАНСТВЕ ПОРИСТОГО МАТЕРИАЛА 2011
  • Михайлов Дмитрий Николаевич
  • Надеев Александр Николаевич
  • Хлебников Вадим Николаевич
  • Зобов Павел Михайлович
RU2467316C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ РАВНОВЕСНОЙ С ГАЗОВЫМ ГИДРАТОМ ПОРОВОЙ ВОДЫ В ДИСПЕРСНЫХ СРЕДАХ (ВАРИАНТЫ) 2008
  • Чувилин Евгений Михайлович
  • Истомин Владимир Александрович
  • Сафонов Сергей Сергеевич
RU2391650C1
Способ определения коэффициента вытеснения нефти в масштабе пор на основе 4D-микротомографии и устройство для его реализации 2021
  • Кадыров Раиль Илгизарович
  • Глухов Михаил Сергеевич
  • Стаценко Евгений Олегович
  • Нгуен Тхань Хынг
RU2777702C1
Способ оценки изменения характеристик пустотного пространства керновой или насыпной модели пласта при проведении физико-химического моделирования паротепловой обработки 2023
  • Болотов Александр Владимирович
  • Минханов Ильгиз Фаильевич
  • Кадыров Раиль Илгизарович
  • Чалин Владислав Валерьевич
  • Тазеев Айдар Ринатович
  • Варфоломеев Михаил Алексеевич
RU2810640C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ИЗМЕНЕНИЯ СВОЙСТВ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА ПОД ВОЗДЕЙСТВИЕМ БУРОВОГО РАСТВОРА 2013
  • Михайлов Дмитрий Николаевич
  • Шако Валерий Васильевич
  • Рыжиков Никита Ильич
  • Надеев Александр Николаевич
  • Тевени Бертран
RU2525093C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ И КОНЦЕНТРАЦИИ ГЛИНЫ В ОБРАЗЦЕ КЕРНА 2011
  • Михайлов Дмитрий Николаевич
  • Надеев Александр Николаевич
  • Шако Валерий Васильевич
  • Рыжиков Никита Ильич
RU2467315C1
СПОСОБ ИЗМЕРЕНИЯ ВЕСОВОЙ КОНЦЕНТРАЦИИ ГЛИНЫ В ОБРАЗЦЕ ПОРИСТОГО МАТЕРИАЛА 2012
  • Михайлов Дмитрий Николаевич
  • Шако Валерий Васильевич
  • Чувилин Евгений Михайлович
  • Самарин Евгений Николаевич
RU2507510C1

Реферат патента 2013 года СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ НЕКОНСОЛИДИРОВАННЫХ ПОРИСТЫХ СРЕД

Использование: для исследования образцов неконсолидированных пористых сред. Сущность: заключается в том, что образец предварительно замораживают, замороженный образец в условиях отрицательной температуры приводят в контакт с замороженным раствором рентгеноконтрастного агента, по окончании насыщения образца проводят компьютерную рентгеновскую микротомографию образца при отрицательных температурах и путем анализа полученного компьютерного томографического изображения определяют пространственное распределение и концентрацию ледяных и/или газогидратных включений, открытой и закрытой пористости, распределение пор по размерам, удельную поверхность в образце. Технический результат: повышение точности оценки характеристик неконсолидированных пористых сред. 9 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 486 495 C1

1. Способ исследования образцов неконсолидированных пористых сред, в соответствии с которым образец предварительно замораживают, замороженный образец в условиях отрицательной температуры приводят в контакт с замороженным раствором рентгеноконтрастного агента, по окончании насыщения образца проводят компьютерную рентгеновскую микротомографию образца при отрицательных температурах и путем анализа полученного компьютерного томографического изображения определяют пространственное распределение и концентрацию ледяных и/или газогидратных включений, открытой и закрытой пористости, распределение пор по размерам, удельную поверхность в образце.

2. Способ по п.1, в котором в качестве рентгеноконтрастного агента используют водорастворимое соединение, в состав которого входит химический элемент, обладающий высокой степень ослабления рентгеновского излучения.

3. Способ по п.2, в котором в качестве химического элемента, обладающего высокой степенью ослабления рентгеновского излучения, используют элемент с большим атомным весом, а водорастворимое соединение представляет собой соль или оксид.

4. Способ по п.3, в котором в качестве элемента с большим атомным весом используют тяжелый металл из группы Pb, Ba, Sr, Ra и др.

5. Способ по п.1, в котором контакт замороженного образца неконсолидированных пористых сред с замороженным раствором рентгеноконтрастного агента осуществляют при температуре ниже плавления льда/гидрата в поровом пространстве образца.

6. Способ по п.5, в котором контакт замороженного образца неконсолидированных пористых сред с замороженным раствором рентгеноконтрастного агента осуществляют при температуре от -7°C до -10°C.

7. Способ по п.1, в котором образец неконсолидированных пористых сред в замороженном состоянии и замороженный раствор рентгеноконтрастного агента предварительно выдерживают при температуре ниже плавления льда/гидрата в поровом пространстве образца до стабилизации температуры.

8. Способ по п.7, в котором образец неконсолидированных пористых сред в замороженном состоянии, и замороженный раствор рентгеноконтрастного агента предварительно выдерживают при температуре от -7°C до -10°C.

9. Способ по п.1, в соответствии с которым компьютерную рентгеновскую микротомографию образца проводят при температуре ниже плавления льда/гидрата в поровом пространстве образца.

10. Способ по п.9, в соответствии с которым компьютерную рентгеновскую микротомографию образца проводят при температуре от -7°C до -10°C.

Документы, цитированные в отчете о поиске Патент 2013 года RU2486495C1

O.Torsaeter, The effect of freezing of slightly consolidated cores, SPE Formation Evaluation, 1987, v.2, N3, p.357-360
US 5359194 A, 25.10.1994
US 4982086 A, 01.01.1991
СПОСОБ ОЦЕНКИ ПРОНИКАЮЩЕЙ СПОСОБНОСТИ ЖИДКОСТИ 2006
  • Анисимов Николай Викторович
  • Пирогов Юрий Андреевич
RU2316754C1
Способ определения пористости адсорбентов 1986
  • Плавник Григорий Моисеевич
  • Кулемин Владимир Васильевич
  • Карета Вячеслав Иванович
SU1469322A1
Способ определения размера кристаллитов в пористых материалах 1974
  • Маликова Жанна Григорьевна
  • Рыбакова Людмила Михайловна
  • Конторович Светлана Ильинична
  • Щукин Евгений Дмитриевич
SU501342A1

RU 2 486 495 C1

Авторы

Надеев Александр Николаевич

Чувилин Евгений Михайлович

Попова Ольга Владимировна

Даты

2013-06-27Публикация

2011-12-20Подача