Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности оно может быть использовано для моделирования процессов миграции нефти в почве, а также анализа физико-механических процессов, происходящих при этом.
Известен способ определения загрязненности почвенного покрова техногенными компонентами (патент РФ №2229738, МПК G01V 9/00, Опубликован: 27.05.2004 Бюл. №15), при котором пробы анализируют при помощи бинокулярного стереоскопического микроскопа, устанавливают процентное соотношение техногенных компонентов, по которым проводят построение изолиний и выделяют загрязненные участки почвенного покрова.
Известен способ выявления зоны техногенного химического загрязнения (патент РФ №2208781, МПК G01N 30/02, опубликован: 20.07.2003, бюл. №20), в котором из проб атмосферного воздуха, воды поверхностного источника или почвы извлекают загрязнения различной токсичности, подвергают соответствующей пробоподготовке, переносят в хроматографическую колонку хроматографа, снабженного детектором неразрушающего контроля, вводят модельную смесь двух токсикантов, в частности гексана и бензола, один из которых является малотоксичным, а другой обладает высокой неспецифической токсичностью, измеряют время удерживания бензола относительно гексана при постоянной температуре термостата, определяют относительный объем удерживания бензола по отношению к гексану при заданной скорости газа-носителя и рассчитывают содержание загрязнений в конкретных зонах объектов окружающей среды.
Недостатком вышеуказанных методов является затрата большого количества времени на подготовку к пробоотбору и проведение анализа, кроме того, отсутствует возможность 3D визуализации пространственного распределения нефти в образце.
В патенте РФ №2467316 (МПК G01N 23/083, опубликовано 20.11.2012, бюл. №32) описывается способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала, сущность которого заключается в том, что в образец пористого материала закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль металла с высоким атомным весом.
Недостатком данного способа при изучении процессов миграции нефти является возможность применения его только для пористых материалов с твердым скелетом. Так как есть необходимость закачки контрастного вещества в образец, что искажает естественную структуру почвы или других сыпучих пористых материалов.
Кроме этого отсутствует возможность прямого изучения пространственного распределения нефти в пористом материале, так как методика определения остаточной нефтенасыщенности керна основана на косвенных признаках вытеснения нефти рентгеноконтрастной водой.
Пространственное распределение нефти и нефтепродуктов, содержащихся в поровом пространстве почвогрунта, является важной информацией для прогнозирования последствий аварийных разливов нефти и уточнения методов рекультивации почвы в результате нефтезагрязнения.
По данным Министерства природных ресурсов, количество разливающейся нефти в России составляет 17-20 млн т/год. Это около 7% добычи нефти [1].
В первую очередь от аварийных разливов нефти и нефтепродуктов страдает почвенно-растительный комплекс, который впоследствии становится источником загрязнения сопредельных сред (воздуха, поверхностных и подземных вод).
В настоящее время предварительная диагностика нефтяных загрязнений в почвах проводится непосредственной в поле или в полевой лаборатории. Характер загрязнения определяется непосредственно в разрезе. Для этого к ровной лицевой стенке разреза плотно прикладывают лист фильтровальной бумаги. В местах, где почва загрязнена нефтью и нефтепродуктами, на листе бумаги выступят масляные пятна.
Объем нефтенасыщенного грунта Vгр вычисляют по формуле [2].
Средняя глубина hcp пропитки грунта на всей площади Fгр нефтенасыщенного грунта определяется как среднее арифметическое из шурфовок (не менее 5 равномерно распределенных по всей поверхности).
Как видно, данная методика основывается на экспертной оценке и усреднении глубины пропитки грунта, что приводит к большим погрешностям при определении толщины срезаемого нефтезагрязненного грунта.
При крупных нефтеразливах количество загрязненного грунта, который необходимо снять с целью рекультивации будет значительно меняться в зависимости от толщины срезаемого слоя. А это в свою очередь будет влиять на качество рекультивационных работ и на экономические показатели.
Одним из наиболее распространенных томография неразрушающих методов исследования структуры образца является рентгеновская компьютерная микротомография.
Изучение процесса миграции нефти в почве осложнено тем, что жидкости, как правило, имеют низкую плотность, вследствие чего их довольно сложно выделить с помощью метода рентгеновской томографии.
Задача: Изучение пространственного распределения нефти в почве и других пористых материалах.
Технический результат заключается в повышении рентгеновской контрастности нефти и нефтепродуктов, содержащихся в поровом пространстве грунта, при проведении компьютерной томографии.
Указанный технический результат обеспечивается тем, что на образце грунта моделируется разлив нефти, в которую заранее добавлен рентгеноконтрастный агент. Для приготовления рентгеноконтрастного агента используется спирт с числом атомов углерода 3 и более, в котором растворяется соль металла с высоким атомным весом до полного насыщения [3].
После того, как движение нефти в образце грунта прекратится, проводят компьютерную рентгеновскую микротомографию образца и определяют пространственное распределение и концентрацию нефти и нефтепродуктов путем анализа полученного компьютерного томографического изображения.
Данный метод может применяться для прямого анализа пространственного распределения нефти в любых пористых средах.
Изобретение поясняется рисунками, где на фиг. 1 приведена 3D микромодель разлива нефти на грунт до смешивания с контрастным агентом, а на фиг. 2 - приведена 3D микромодель разлива нефти на грунт после применения контрастного агента. Фиг. 1-2 получены по данным компьютерной микротомографии.
Способ исследования пространственного распределения нефти в поровом пространстве грунтов и других пористых сред осуществляется следующим образом:
- приготовление рентгеноконтрастного агента: используется спирт с числом атомов углерода 3 и более, в котором растворяется соль металла с высоким атомным весом до полного насыщения;
- рентгеноконтрастный агент добавляется в исследуемую нефть;
- исследуемый образец устанавливается и фиксируется в рентгенопрозрачном предметном столике;
- на образец производится разлив «рентгеноконтрастной» нефти.
После того, как движение нефти в образце фунта прекратится, предметный столик с образцом помещается в компьютерный микротомограф и осуществляется сканирование. Далее определяется пространственное распределение и концентрация нефти и нефтепродуктов путем анализа полученных томографических изображений с использованием специализированных программ.
В качестве примера исследования процессов миграции нефти в грунтах были взяты образцы почв, расположенных вдоль трассы магистрального нефтепровода. Были отобраны цилиндрические образцы ненарушенного сложения (микромонолиты) диаметром 3 см и высотой 4 см. Образцы отбирали в пластиковые трубки при полевой влажности. Для сохранения полевой влажности образцов трубки с микромонолитами были со всех сторон заклеены лабораторной пленкой.
Для приготовления насыщенного раствора рентгеноконтрастного агента была взята соль иодид кадмия имеющая хорошую растворимость в изопропиловом спирте (59,5 г на 100 г растворителя при 20°С).
На образец грунта был смоделирован разлив нефти в количестве 0,05 мл, в которую заранее был добавлен рентгеноконтрастный агент.
Исследование проводились на компьютерном микротомографе высокого разрешения SkyScan 1172 (Бельгия) с энергией пучка 100 кэВ и фильтром (Сu+Аl 0,5 mm) с разрешением 27,8 мкм. Для обработки и количественного анализа изображений использовали специализированные программы DataViewer и CTan, CTvol поставляемые фирмой изготовителем SkyScan.
В результате были получены цифровые 3D изображения пространственного распределения нефти в данных образцах (см. фиг. 2).
Используемая литература
1. Воробьев Ю.Л., Акимов В.А., Соколов Ю.И. - Предупреждение и ликвидация аварийных разливов нефти и нефтепродуктов. - М.: Ин-октаво, 2005. - 368 с.
2. Методика определения ущерба окружающей природной среде при авариях на магистральных нефтепроводах. Утв. Минтопэнерго РФ 1 ноября 1995 г.
3. http://chemister.ru/Database (База данных физико-химических свойств и синтезов веществ).
4. РД 39-0147098-015-90. Инструкция по контролю за состоянием почв на объектах предприятий Миннефтепрома.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ В КЕРНОВОМ МАТЕРИАЛЕ ЭФФЕКТИВНОГО ПОРОВОГО ПРОСТРАНСТВА | 2014 |
|
RU2548605C1 |
СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ МЕРЗЛЫХ ПОРОД | 2011 |
|
RU2482465C1 |
СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ НЕКОНСОЛИДИРОВАННЫХ ПОРИСТЫХ СРЕД | 2011 |
|
RU2486495C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ И КОНЦЕНТРАЦИИ КОМПОНЕНТА В ПОРОВОМ ПРОСТРАНСТВЕ ПОРИСТОГО МАТЕРИАЛА | 2011 |
|
RU2467316C1 |
Способ оценки изменения характеристик пустотного пространства керновой или насыпной модели пласта при проведении физико-химического моделирования паротепловой обработки | 2023 |
|
RU2810640C1 |
Способ определения коэффициента вытеснения нефти в масштабе пор на основе 4D-микротомографии и устройство для его реализации | 2021 |
|
RU2777702C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ И КОНЦЕНТРАЦИИ ГЛИНЫ В ОБРАЗЦЕ КЕРНА | 2011 |
|
RU2467315C1 |
Способ создания микромодели порового пространства на основе компьютерной томографии керна | 2022 |
|
RU2822996C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ РАВНОВЕСНОЙ СМАЧИВАЕМОСТИ ПОВЕРХНОСТИ РАЗДЕЛА ПУСТОТНОГО ПРОСТРАНСТВА И ТВЕРДОЙ ФАЗЫ ОБРАЗЦА ГОРНОЙ ПОРОДЫ | 2015 |
|
RU2670716C9 |
Способ отбора и реконструкции структуры шлама для определения коллекторских свойств и моделирования фильтрационных и петрофизических характеристик пород - технология "Псевдокерн" | 2022 |
|
RU2784104C1 |
Использование: для исследования пространственного распределения нефти в поровом пространстве грунтов и других пористых сред. Сущность изобретения заключается в том, что отбирают пробу исследуемого материала, применяют рентгеноконтрастный агент и метод рентгеновской компьютерной микротомографии, при этом рентгеноконтрастный агент, для приготовления которого используется спирт с числом атомов углерода 3 и более, в котором растворяется соль металла с высоким атомным весом до полного насыщения, смешивается с нефтью, кроме того, осуществляют прямое изучение пространственного распределения нефти в пористом материале. Технический результат: повышение рентгеновской контрастности нефти и нефтепродуктов, содержащихся в поровом пространстве грунта, при проведении компьютерной томографии. 2 ил.
Способ исследования пространственного распределения нефти в поровом пространстве грунтов и других пористых сред, состоящий из отбора проб исследуемого материала, применения рентгеноконтрастного агента и метода рентгеновской компьютерной микротомографии, отличающийся тем, что рентгеноконтрастный агент, для приготовления которого используется спирт с числом атомов углерода 3 и более, в котором растворяется соль металла с высоким атомным весом до полного насыщения, смешивается с нефтью, кроме того, метод подразумевает прямое изучение пространственного распределения нефти в пористом материале.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ И КОНЦЕНТРАЦИИ КОМПОНЕНТА В ПОРОВОМ ПРОСТРАНСТВЕ ПОРИСТОГО МАТЕРИАЛА | 2011 |
|
RU2467316C1 |
Способ рентгенографического исследования структуры пустотного пространства материалов | 1983 |
|
SU1122951A1 |
Способ определения структуры пустотного пространства пористых твердых тел | 1989 |
|
SU1679294A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ НЕФТЕНАСЫЩЕННОСТИ ПОРОДЫ | 2007 |
|
RU2360233C1 |
US 4540882A, 10.09.1985 | |||
US 4722095A, 26.01.1988. |
Авторы
Даты
2018-05-23—Публикация
2017-05-02—Подача