СПОСОБ КОНТРОЛЯ КОЛЕБАТЕЛЬНОЙ СИСТЕМЫ ПЬЕЗОКЕРАМИЧЕСКИХ ОБРАЗЦОВ НА НАЛИЧИЕ ДЕФЕКТОВ Российский патент 2013 года по МПК G01N29/04 

Описание патента на изобретение RU2487345C2

Изобретение относится к области контроля пьезокерамических элементов и приборов с использованием пьезокерамических элементов на наличие дефектов в них в процессе изготовления и может быть использовано на предприятиях-изготовителях пьезокерамических элементов и на предприятиях, изготавливающих приборы с использованием пьезокерамических элементов.

Известен ряд способов контроля пьезокерамических элементов на наличие в них дефектов. Например.

Метод (способ) контроля колебательной системы цилиндрических пьезокерамических образцов на наличие дефектов, основанный на регистрации формы свободных механических колебаний образца. Дефектность образца устанавливается по степени отклонений формы осциллограмм его свободных колебаний от формы осциллограмм колебаний бездефектного образца. Руководящий документ ЦНИИ «Морфизприбор» Санкт-Петербург РД5.9122-73, раздел 11.

Метод (способ) контроля наличия дефектов неармированных пьезокерамических образцов, основанный на анализе спектра его свободных колебаний. Метод служит для выявления дефектов механической системы, влияющих на спектр свободных колебаний. Руководящий документ РД5.9122-73, раздел 12.

Вышеуказанные аналоги трудоемки, технически сложны и ограничены в возможностях оценки дефекта.

Известен метод (способ) измерения электрофизических параметров пьезокерамических элементов, основанный на анализе амплитудно-частотной характеристики (АЧХ) модуля полной проводимости или сопротивления в области рабочих частот элемента /Отраслевой стандарт ОСТ 11 0444-87. «Материалы пьезокерамические» и ГОСТ 12370-80 «Материалы пьезокерамические. Методы испытаний»/.

Обычно АЧХ модуля полной проводимости (сопротивления), измеренная амплитудным методом в области рабочей частоты образца, имеет два четко выраженных резонанса - механический и электромеханический (см. рис.1). Эта форма АЧХ реализуется только в случае, когда резонансные частоты других мод колебаний образца отстоят от рабочей частоты более чем в 3 раза. Поэтому в «Отраслевом стандарте» приведен перечень пьезоэлементов разных типов с соотношением размеров, при которых выполняется это соотношение частот близлежащих мод колебаний.

При таком соотношении резонансных частот мод колебаний в рабочем диапазоне пьезоэлемента колебания образца приближены к условиям работы свободного механического контура. Для этого случая верны формулы вычисления параметров, приведенные в «Отраслевом стандарте» ОСТ 11 0444 -87.

Л.Камп («Подводная акустика» гл.6, изд. 1972, Москва, изд.Мир) указывает, что могут быть отклонения от типичной кривой АЧХ, см. рис.1, обусловленные дополнительными резонансами из-за несовершенства структуры материала, т.е. наличия механических дефектов в виде трещин, сколов, неоднородностей и т.п. В этом случае АЧХ модуля проводимости имеет вид, представленный на рис.2.

Допустимые величины «всплесков» АЧХ на этих резонансах оговариваются в технической документации на основании требований к механической прочности образца или требований к АЧХ акустических параметров изделия. Таким образом, по виду АЧХ модуля полной проводимости (сопротивления) можно определить параметры пьезоэлемента и оценить состояние его структуры.

Способ оценки пьезокерамических элементов по анализу АЧХ модуля полной проводимости (сопротивления), используемый в ОСТ 110444-87, принят за прототип.

На практике используются пьезоэлементы и преобразователи из них, у которых резонансные частоты разных мод колебаний отстоят друг от друга менее чем в три раза. В этом случае возможно взаимодействие близлежащих мод колебаний и искажение формы колебаний пьезоэлемента в рабочей полосе частот, что тоже может привести к появлению дополнительных искажений АЧХ.

В общем случае на АЧХ модуля полной проводимости таких пьезоэлементов в рабочей полосе частот кроме частот механического и электромеханического (антирезонанса) резонансов рабочей моды колебаний могут быть дополнительные резонансы, вызванные как механическими дефектами структуры, так и взаимодействием близко расположенных мод колебаний (см. рис.2).

Приведенные методы в РД5.9122-73 не позволяют однозначно классифицировать причины возникновения дополнительных резонансов на АЧХ модуля полной проводимости.

Целью предлагаемого изобретения является осуществление способа контроля колебательной системы пьезокерамических образцов на наличие дефектов, позволяющего выяснять состояние структуры пьезоэлемента на основе анализа поведения дополнительных резонансов.

Для выяснения причин возникновения дополнительных резонансов предлагается на пьезокерамическом образце, имеющем на АЧХ модуля полной проводимости, кроме рабочих частот резонанса и антирезонанса дополнительные резонансы в области рабочих частот, ввести механическое демпфирование моды колебаний, имеющей частоту, ближайшую к рабочей частоте. Т.о. можно снизить амплитуду колебаний нерабочей моды и уменьшить ее влияние на усложнение формы колебаний элемента. Обычно это мода с более высокой резонансной частотой. Демпфирование рационально осуществлять в области максимальных амплитуд демпфируемых колебаний.

О причинах появления дополнительных резонансов на АЧХ модуля проводимости предполагается судить по поведению этих резонансов. Т.е. если они сохраняются при демпфировании нерабочей моды, то причиной их появления являются механические дефекты (сколы, трещины и т. п.), если они исчезают при демпфировании, то причиной их появления является взаимодействие мод колебаний,

Экспериментальная проверка проводилась на партии радиально поляризованных элементов типа «трубка» из пьезоматериала ЦТБС-3. Размеры трубки: Днар=14 мм, Двнутр=11 мм, высота = 10 мм.

Резонансная частота (Fr) рабочей радиально пульсирующей моды, т.е. нулевой моды продольных колебаний по окружности:

F r = C 1 E 2 π r c p

Резонансная частота ближайшей моды колебаний элемента - продольные колебания по высоте:

F н = C 1 E 2 H

Соотношение частот:

F н F r = π r c p H 1,96

Измерение АЧХ модуля полной проводимости проводилось с использованием средств и метода по ОСТ 110444-87.

Измерения проводились как на свободных пьезоэлементах, когда электрическое соединение со схемой измерения осуществлялось с помощью гибких проводов, припаянных к электродам пьезоэлемента, так и в составе приспособления, имеющего две изолированные друг от друга упругие металлические пластины, осуществлявших электрическое соединение (контакт) с внутренним и наружным электродами и механическое демпфирование продольных колебаний пьезоэлемента по высоте в зависимости от расположения контактных узлов (см. рис.3).

«Контактный узел» упругих пластин устанавливался либо в средней части кольца, где находится узел колебаний по высоте (рис.3а), либо на краю кольца, где амплитуда колебаний по высоте максимальна и демпфирование продольных колебаний реализуется наиболее эффективно (рис.3б). Усилие сжатия упругих пластин подбиралось экспериментально и составляло 3-5 "Ньютонов".

Измеренные АЧХ модуля полной проводимости свободных пьезоэлементов и при использовании приспособления по варианту рис.3а полностью совпадали, что и следовало ожидать, т.к. крепление в узловой точке продольных колебаний по высоте пьезоэлемента практически не влияет на эти колебания.

АЧХ ряда пьезоэлементов партии, измеренных по варианту рис.3а, имели дополнительный резонанс (всплеск) между частотами резонанса и антирезонанса. Установление причины появления дополнительного резонанса было целью дальнейших экспериментов.

Для этого пьезоэлементы, имевшие дополнительный резонанс, были измерены в приспособлении по варианту рис.3б, т.е. с демпфированием продольных колебаний по высоте. У подавляющего большинства этих пьезоэлементов дополнительный резонанс на АЧХ исчез. Т.о. демпфирование продольной моды колебаний по высоте позволило «трубке» совершать радиальные колебания как бы с одной степенью свободы, т.е. без связи с задемпфированной продольной модой колебаний. А следовательно, «всплески» на АЧХ этих пьезоэлементов, отмечаемые при измерениях в условиях свободного пьезоэлемента или с использованием приспособления с креплением в центре (рис.3а), были вызваны взаимодействием продольной и радиальной мод колебаний.

Пьезоэлементы, у которых дополнительный резонанс на АЧХ при измерениях по варианту рис.3б сохранился, имели механические дефекты. Один имел скол на торце трубки размером 0,5×0,3 мм и глубиной до 0,3 мм, другие пьезоэлементы имели трещины на боковой поверхности.

Отмечено, что формы АЧХ дефектных образцов, т.е. частоты и амплитуды рабочих резонансов и дополнительных резонансов, при всех рассмотренных способах измерений практически совпадают. Т.о. предложенный способ демпфирования не маскирует дополнительные резонансы, вызванные механическими дефектами структуры пьезоэлемента.

Проведенные эксперименты подтверждают возможность использования предложенного способа для уточнения причин появления дополнительных резонансов на АЧХ модуля проводимости и тем самым определять возможности дальнейшего использования испытанных элементов (образцов).

Приспособления для демпфирования колебаний при измерении АЧХ других типов пьезокерамических образцов подбираются экспериментально.

Краткое описание рисунков

На рис.1 приведена АЧХ модуля полной проводимости пьезоэлемента в области рабочих частот, не имеющего механических дефектов и взаимодействия различных мод колебаний.

Fp - частота механического резонанса (рабочий резонанс);

Fap - частота электромеханического резонанса (антирезонанс).

На рис.2 приведена АЧХ модуля полной проводимости пьезоэлемента, имеющего дополнительные резонансы (всплески), вызванные механическими дефектами или взаимодействием мод колебаний.

F1÷F4 - частоты дополнительных резонансов.

На рис.3а и 3б приведены варианты крепления пьезоэлемента в специальном приспособлении, обеспечивающем электрический контакт с обкладками пьезоэлемента, и механическое демпфирование продольных колебаний пьезоэлемента.

1 - пьезоэлемент типа "трубка";

2 - упругие пластины;

3 - контактный узел;

4 - основание приспособления.

Похожие патенты RU2487345C2

название год авторы номер документа
Способ определения пьезомодулей 1991
  • Земляков Виктор Леонидович
SU1800406A1
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ПЬЕЗОПАКЕТОВ 2019
  • Иванов Виктор Евгеньевич
  • Ливанская Марина Александровна
  • Селищев Анатолий Алексеевич
RU2730127C1
ЦИФРОВОЙ СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПЬЕЗОЭЛЕКТРИЧЕСКИХ ЭЛЕМЕНТОВ 2014
  • Кондаков Евгений Владимирович
  • Иванов Николай Макарович
  • Милославский Юлий Константинович
RU2584719C1
Способ определения упругих податливостей s11Е, s12Е, s13Е, s33Е и пьезоэлектрических модулей d31,d33 на одном образце в виде диска 2016
  • Мадорский Виктор Вениаминович
RU2629927C1
Способ определения добротности пьезокерамического элемента 1989
  • Межерицкий Александр Васильевич
SU1732298A1
Способ измерения полного набора модулей пьезоэлектрической керамики на одном образце 2017
  • Мадорский Виктор Вениаминович
RU2663271C1
Способ определения коэффициента электромеханической связи пьезоэлектрических материалов 1989
  • Писаренко Георгий Георгиевич
  • Прудько Николай Иванович
  • Хаустов Владимир Кириллович
SU1711067A1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1997
  • Вусевкер Ю.А.
  • Гориш А.В.
  • Доля В.К.
  • Ефремов О.И.
  • Каспин А.И.
  • Ладакин Г.К.
  • Новиков Ю.А.
  • Панич А.Е.
RU2121241C1
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ГИДРОАКУСТИЧЕСКОГО ПЬЕЗОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Гущин Александр Антонович
  • Земнюков Николай Евгеньевич
  • Киселев Николай Константинович
  • Милехин Анатолий Григорьевич
RU2493543C2
Способ определения добротности колебания растяжения-сжатия по толщине пьезокерамического элемента 1989
  • Межерицкий Александр Васильевич
SU1742749A1

Иллюстрации к изобретению RU 2 487 345 C2

Реферат патента 2013 года СПОСОБ КОНТРОЛЯ КОЛЕБАТЕЛЬНОЙ СИСТЕМЫ ПЬЕЗОКЕРАМИЧЕСКИХ ОБРАЗЦОВ НА НАЛИЧИЕ ДЕФЕКТОВ

Использование: для контроля пьезокерамических элементов и приборов с использованием пьезокерамических элементов на наличие дефектов в них в процессе изготовления. Сущность заключается в том, что измеряют амплитудно-частотную характеристику (АЧХ) модуля полной проводимости (сопротивления) образца и выявляют резонансы в области рабочей частоты, при этом в случае наличия на АЧХ свободного пьезокерамического образца дополнительных резонансов, кроме частот механического и электромеханического резонансов рабочей моды колебаний, вводят механическое демпфирование моды колебаний, имеющей резонансную частоту, ближайшую к рабочей, причем демпфирование осуществляют в области максимальной амплитуды демпфируемых колебаний и при этом измеряют АЧХ образца; сохранение дополнительных резонансов на АЧХ свидетельствует о наличии механических дефектов, а их исчезновение свидетельствует об отсутствии механических дефектов. Технический результат: обеспечение возможности контроля состояния структуры пьезоэлемента на основе анализа поведения дополнительных резонансов. 3 ил.

Формула изобретения RU 2 487 345 C2

Способ контроля колебательной системы пьезокерамических образцов на наличие дефектов, заключающийся в измерении амплитудно-частотной характеристики (АЧХ) модуля полной проводимости (сопротивления) образца и в выявлении резонансов в области рабочей частоты, отличающийся тем, что при наличии на АЧХ свободного пьезокерамического образца дополнительных резонансов, кроме частот механического и электромеханического резонансов рабочей моды колебаний, вводят механическое демпфирование моды колебаний, имеющей резонансную частоту, ближайшую к рабочей, причем демпфирование осуществляют в области максимальной амплитуды демпфируемых колебаний и при этом измеряют АЧХ образца; сохранение дополнительных резонансов на АЧХ свидетельствует о наличии механических дефектов, а их исчезновение свидетельствует об отсутствии механических дефектов.

Документы, цитированные в отчете о поиске Патент 2013 года RU2487345C2

Синхронизатор с дисковой кареткой для коробок передач 1956
  • Фомин П.С.
SU110444A1
Земляков В.Л
Развитие пьезоэлектрического приборостроения на основе новых информационно-измерительных и технологических методов//Автореферат диссертации на соискание ученой степени доктора технических наук
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
Способ неразрушающего контроля пьезокерамического преобразователя 1989
  • Виштак Анатолий Павлович
  • Вовк Игорь Владимирович
  • Лейко Александр Григорьевич
  • Решетинский Валерий Николаевич
  • Соболева Татьяна Николаевна
SU1753626A1
Устройство для контроля динамических характеристик пьезорезонансных измерительных преобразователей 1983
  • Ермолаев Николай Александрович
SU1166016A1
JP 2001242110 A, 07.09.2001
JP 7098260 A, 11.04.1995.

RU 2 487 345 C2

Авторы

Карузо Светлана Михаиловна

Степанов Лев Давидович

Стырикович Иосиф Иосифович

Даты

2013-07-10Публикация

2009-04-30Подача