СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ Российский патент 2013 года по МПК C23C22/33 

Описание патента на изобретение RU2489518C1

Изобретение относится к области металлургического производства и может быть использовано для получения электроизоляционных покрытий на поверхности анизотропной электротехнической стали.

Известен состав для получения электроизоляционного покрытия (RU 2209255 C2, 20.09.2001), содержащий ионы фосфата, алюминия, магния, бора, хрома и кремнефтористо-водородную кислоту, мас.%:

ионы фосфата (в пересчете на P2O5) 25,8-29,9 ионы алюминия (Al3+) 0,8-1,7 ионы магния (Mg2+) 1,3-1,7 ионы бора (в пересчете на B2O3) 0,11-0,17 ионы хрома (Cr6+) 0,2-0,5 кремнефтористо-водородная кислота 22,0-28,0 двуокись кремния (SiO2) 0,2-1,0 вода до 100.

Недостатком данного состава является низкий коэффициент сопротивления, низкие физико-механические и магнитные свойства, а также то, что при нанесение состава на металл происходит налипание его на отжимные валки.

Известен состав (патент №3856568 США, 1972) для получения электроизоляционного покрытия содержащий фосфат алюминия, водную дисперсию диоксида кремния с добавками соединений хрома и борной кислоты, мас.%:

ионы фосфата (в пересчете на P2O5) 10,3 ионы алюминия (Al3+) 1,1 борная кислота (H3BO3) 0,9 ионы хрома (Cr6+) 1,8 двуокись кремния (SiO2) 10,3 вода до 100.

Недостатком данного изобретения является неудовлетворительный товарный вид получаемого покрытия, низкие магнитные и физико-механические свойства.

Наиболее близко к заявляемому составу является состав (RU 2371518 C2, 02.07.2007) содержащий ионы фосфата, алюминия, магния, хрома, двуокиси кремния и воду, мас.%:

ионы фосфата (в пересчете на P2O5) 6,6-14,6 ионы алюминия (Al3+) 0,3-0,71 ионы магния (Mg2+) 0,41-0,92 ионы хрома (Cr6+) 2,8-6,2 коллоидная двуокись кремния (в пересчете на SiO2) 9,0-20,2 вода до 100

при следующем соотношении компонентов:

P2O5/(Al3++Mg2+) 8,5-11,5 SiO2/P2O5 1,1-1,5.

Недостатком данного изобретения является низкая стабильность состава и большое содержание ионов хрома (VI).

Задачей изобретения является повышение стабильности состава, понижение содержания ионов хрома (VI), при сохранении и улучшении удовлетворительного товарного вида, физико-механических и магнитных свойств электроизоляционного покрытия.

Поставленная задача достигается тем, что на электротехническую сталь наносят состав содержащий ионы фосфата, алюминия, магния, хрома (VI) и воду, который дополнительно содержит ионы хрома (III) и коллоидную двуокись кремния с диаметром мицелл 10-15 нм, мас.%:

ионы фосфата (в пересчете на P2O5) 6,6-14,6 ионы алюминия (Al3+) 0,3-0,71 ионы магния (Mg2+) 0,41-0,92 ионы хрома (Cr6+) 0,5-2,0 ионы хрома (Cr3+) 0,5-1,5 коллоидная двуокись кремния (в пересчете на SiO2) 9,0-20,2 вода до 100,

Сущность изобретения подтверждается следующими примерами. Во всех примерах образцы электротехнической стали обрабатывались в течение 5 с при температуре 20-40°С. Излишки раствора удалялись отжимом гуммированными валками. Покрытия подвергались термообработке при температуре 800°С в течение 60 с.

Физико-механические свойства покрытий определяют следующие показатели:

- адгезия - прочность при изгибе - изгибом образцов на цилиндрической оправке диаметром 3 мм,

- коэффициент сопротивления по ГОСТ 12119-80;

- метод определения влагостойкости изложен в М.И. Карякина. Испытание лакокрасочных материалов и покрытий. - М.: Химия, 1988;

- магнитная активность по ГОСТ 12119-80.

В таблице 1 представлены исследуемые составы и состав известного, а также приведены характеристики состава, физико-механические и магнитные свойства стали с электроизоляционным покрытием.

Примеры.

1. Характеризует свойства прототипа и покрытий, полученных в данном растворе.

2. Берем образцы анизотропной электротехнической стали, обрабатываем их составом со следующим содержанием компонентов, мас.%:

ионы фосфата (в пересчете на P2O5) 6,2 ионы алюминия (Al3+) 0,2 ионы магния (Mg2+) 0,3 ионы хрома (Cr6+) 0,4 ионы хрома (Cr3+) 0,4 коллоидная двуокись кремния (в пересчете на SiO2) 8,5 диаметр мицелл коллоидной двуокиси кремния 9,0 вода до 100

в течение 5 с при температуре 20-40°С, излишки раствора удалялись отжимом гуммированными валками. Покрытия подвергаем термообработке при температуре 800°С в течение 60 с. Обработка данных по свойствам покрытий дала следующие результаты:

- покрытие не влагостойкое;

- прочность на изгиб покрытие выдерживает;

- коэффициент сопротивления 140 Ом·см2;

- магнитная активность 6%.

3. Берем образцы анизотропной электротехнической стали, обрабатываем их составом со следующим содержанием компонентов, мас.%:

ионы фосфата (в пересчете на P2O5) 6,6 ионы алюминия (Al3+) 0,3 ионы магния (Mg2+) 0,41 ионы хрома (Cr6+) 0,5 ионы хрома (Cr3+) 0,5 коллоидная двуокись кремния (в пересчете на SiO2) 9,0 диаметр мицелл коллоидной двуокиси кремния 10,0 вода до 100

в течение 5 с при температуре 20-40°C, излишки раствора удалялись отжимом гуммированными валками. Покрытии подвергаем термообработке при температуре 800°C в течение 60 с. Обработка данных по свойствам покрытий дала следующие результаты:

- покрытие влагостойкое;

- прочность на изгиб покрытие выдерживает;

- коэффициент сопротивления 300 Ом·см2;

- магнитная активность 8%.

4. Берем образцы анизотропной электротехнической стали, обрабатываем их составом со следующим содержанием компонентов, мас.%:

ионы фосфата (в пересчете на P2O5) 7,0 ионы алюминия (Al3+) 0,6 ионы магния (Mg2+) 0,6 ионы хрома (Cr6+) 1,9 ионы хрома (Cr3+) 1,4 коллоидная двуокись кремния (в пересчете на SiO2) 10,0 диаметр мицелл коллоидной двуокиси кремния 14,0 вода до 100

в течение 5 с при температуре 20-40°C, излишки раствора удалялись отжимом гуммированными валками. Покрытия подвергаем термообработке при температуре 800°C в течение 60 с. Обработка данных по свойствам покрытий дала следующие результаты:

- покрытие влагостойкое;

- прочность на изгиб покрытие выдерживает;

- коэффициент сопротивления 280 Ом·см2;

- магнитная активность 9%.

5 Берем образцы агизотропной электротехнической стали, обрабатываем их составом со следующим содержанием компонентов, мас.%:

ионы фосфата (в пересчете на P2O5) 8,0 ионы алюминия (Al3+) 0,5 ионы магния (Mg2+) 0,5 ионы хрома (Cr6) 0,7 ионы хрома (Cr3+) 1,3 коллоидная двуокись кремния (в пересчете на SiO2) 18,0 диаметр мицелл коллоидной двуокиси кремния 12,0 вода до 100

в течение 5 с при температуре 20-40°C, излишки раствора удалялись отжимом гуммированными валками. Покрытия подвергаем термообработке при температуре 800°C в течение 60 с. Обработка данных по свойствам покрытий дала следующие результаты:

- покрытие влагостойкое;

- прочность на изгиб покрытие выдерживает;

- коэффициент сопротивления 350 Ом·см2;

- магнитная активность 8%.

6. Берем образцы анизотропной электротехнической стали, обрабатываем их составом со следующим содержанием компонентов, мас.%:

ионы фосфата (в пересчете на P2O5) 9,0 ионы алюминия (Al3+) 0,55 ионы магния (Mg2+) 0,7 ионы хрома (Cr6+) 0,9 ионы хрома (Cr3+) 0,8 коллоидная двуокись кремния (в пересчете на SiO2) 12,0 диаметр мицелл коллоидной двуокиси кремния 11,5 вода до 100

в течение 5 с при температуре 20-40°C, излишки раствора удалялись отжимом гуммированными валками. Покрытия подвергаем термообработке при температуре 800°C в течение 60 с. Обработка данных по свойствам покрытий дала следующие результаты:

- покрытие влагостойкое;

- прочность на изгиб покрытие выдерживает;

- коэффициент сопротивления 360 Ом·см2;

- магнитная активность 9%.

7. Берем образцы анизотропной электротехнической стали, обрабатываем их составом со следующим содержанием компонентов, мас.%:

ионы фосфата (в пересчете на P2O5) 10,0 ионы алюминия (Al3+) 0,4 ионы магния (Mg2+) 0,9 ионы хрома (Cr3+) 1,5 ионы хрома (Mg2+) 1,0 коллоидная двуокись кремния (в пересчете на SiO2) 19,0 диаметр мицелл коллоидной двуокиси кремния 15,0 вода до 100

в течение 5 с при температуре 20-40°C, излишки раствора удалялись отжимом гуммированными валками. Покрытия подвергаем термообработке при температуре 800°C в течение 60 с. Обработка данных по свойствам покрытий дала следующие результаты:

- покрытие влагостойкое;

- прочность на изгиб покрытие выдерживает;

- коэффициент сопротивления 230 Ом·см2;

- магнитная активность 8%.

8. Берем образцы анизотропной электротехнической стали, обрабатываем их составом со следующим содержанием компонентов, мас.%:

ионы фосфата (в пересчете на P2O5) 11,0 ионы алюминия (Al3+) 0,7 ионы магния (Mg2+) 0,45 ионы хрома (Cr6+) 0,6 ионы хрома (Cr3+) 1,2 коллоидная двуокись кремния (в пересчете на SiO2) 14,0 диаметр мицелл коллоидной двуокиси кремния 13,0 вода до 100

в течение 5 с при температуре 20-40°C, излишки раствора удалялись отжимом гуммированными валками. Покрытия подвергаем термообработке при температуре 800°C в течение 60 с. Обработка данных по свойствам покрытий дала следующие результаты:

- покрытие влагостойкое;

- прочность на изгиб покрытие выдерживает;

- коэффициент сопротивления 280 Ом·см2;

- магнитная активность 8%.

9. Берем образцы анизотропной электротехнической стали, обрабатываем их составом со следующим содержанием компонентов, мас.%:

ионы фосфата (в пересчете на P2O5) 12,0 ионы алюминия (Al3+) 0,35 ионы магния (Mg2+) 0,8 ионы хрома (Cr6+) 1,7 ионы хрома (Cr3+) 0,7 коллоидная двуокись кремния (в пересчете на SiO2) 11,0 диаметр мицелл коллоидной двуокиси кремния 11,0 вода до 100

в течение 5 с при температуре 20-40°C, излишки раствора удалялись отжимом гуммированными валками. Покрытия подвергаем термообработке при температуре 800°C в течение 60 с. Обработка данных по свойствам покрытий дала следующие результаты:

- покрытие влагостойкое;

- прочность на изгиб покрытие выдерживает;

- коэффициент сопротивления 300 Ом·см2;

- магнитная активность 9%.

10. Берем образцы анизотропной электротехнической стали, обрабатываем их составом со следующим содержанием компонентов, мас.%:

ионы фосфата (в пересчете на P2O5) 14,6 ионы алюминия (Al3+) 0,71 ионы магния (Mg2+) 0,92 ионы хрома (Cr6+) 2,0 ионы хрома (Cr3+) 1,5 коллоидная двуокись кремния (в пересчете на SiO2) 20,0 диаметр мицелл коллоидной двуокиси кремния 15,0 вода до 100

в течение 5 с при температуре 20-40°C, излишки раствора удалялись отжимом гуммированными валками. Покрытия подвергаем термообработке при температуре 800°C в течение 60 с. Обработка данных по свойствам покрытий дала следующие результаты:

- покрытие влагостойкое;

- прочность на изгиб покрытие выдерживает;

- коэффициент сопротивления 220 Ом·см2;

- магнитная активность 8%.

11. Берем образцы анизотропной электротехнической стали, обрабатываем их составом со следующим содержанием компонентов, мас.%:

ионы фосфата (в пересчете на P2O5) 16,0 ионы алюминия (Al3+) 0,8 ионы магния (Mg2+) 1,0 ионы хрома (Cr6+) 2,5 ионы хрома (Cr3+) 2,0 коллоидная двуокись кремния (в пересчете на SiO2) 22,0 диаметр мицелл коллоидной двуокиси кремния 16,0 вода до 100

в течение 5 с при температуре 20-40°C, излишки раствора удалялись отжимом гуммированными валками. Покрытия подвергаем термообработке при температуре 800°C в течение 60 с. Обработка данных по свойствам покрытий дала следующие результаты:

- покрытие не влагостойкое;

- прочность на изгиб покрытие выдерживает;

- коэффициент сопротивления 1300 м·см2;

- магнитная активность 6%.

Примеры 2 и 11 показывают, что при содержании компонентов состава ниже и выше заявленной концентрации, покрытия обладают низкой влагостойкостью, низкой магнитной активностью, низким коэффициентом сопротивления, а составы низкой стабильностью.

Из примеров 3, 4, 5, 6, 7, 8, 9, 10 видно, что поставленная задача достигнута. Использование предложенного состава позволяет улучшить стабильность состава, улучшает физико-механические показатели покрытия, а также улучшает экологичность состава за счет снижения содержания хрома (VI).

Литература

1. Патент №2209255 по заявке №2001125771, 2003.

2. Патент №3856568 США, 1972, стр.4.

3. Патент №2371518 C2 RU, 2007.

4. ГОСТ 12119-80.

5. М.И. Карякина. Испытание лакокрасочных материалов и покрытий. - М.: Химия, 1988.

Похожие патенты RU2489518C1

название год авторы номер документа
СПОСОБ И СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 2007
  • Шибаева Нина Валерьевна
  • Чумаевский Виктор Алексеевич
RU2371518C2
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 2014
  • Максютин Александр Сергеевич
  • Зотов Николай Александрович
  • Каренина Лариса Соломоновна
RU2556184C1
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 2001
  • Маслова Е.Х.
  • Чумаевский В.А.
  • Голубков П.А.
  • Пятницкий А.Г.
  • Лавров В.И.
RU2209255C2
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 2000
  • Чумаевский В.А.
  • Маслова Е.Х.
  • Краснова Т.М.
  • Пятницкий А.Г.
  • Лавров В.И.
RU2176286C2
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 1997
  • Краснова Т.М.
  • Самсиков Е.А.
  • Лавров В.И.
  • Чумаевский В.А.
RU2122603C1
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 2007
  • Шибаева Нина Валерьевна
  • Чумаевский Виктор Алексеевич
RU2360033C2
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 1996
  • Франценюк И.В.
  • Казаджан Л.Б.
  • Лавров В.И.
  • Черных А.М.
  • Краснова Т.М.
  • Чумаевский В.А.
  • Угаров А.А.
  • Южаков А.П.
RU2097858C1
ЭЛЕКТРОИЗОЛЯЦИОННАЯ КОМПОЗИЦИЯ 1996
  • Франценюк И.В.
  • Казаджан Л.Б.
  • Настич В.П.
  • Миндлин Б.И.
  • Лавров В.И.
  • Краснова Т.М.
  • Чумаевский В.А.
RU2096849C1
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 1995
  • Краснова Т.М.
  • Чумаевский В.А.
RU2098514C1
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 1995
  • Краснова Т.М.
  • Чумаевский В.А.
RU2098393C1

Реферат патента 2013 года СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ

Изобретение относится к области металлургического производства и может быть использовано для получения электроизоляционных покрытий на поверхности анизотропной электротехнической стали. Состав для получения электроизоляционного покрытия содержит, мас.%: ионы фосфата в пересчете на P2O5 6,6-14,6, ионы алюминия 0,3-0,71, ионы магния 0,41-0,92, ионы хрома (VI) 0,5-2,0, ионы хрома (III) 0,5-1,5, коллоидную двуокись кремния с диаметром мицелл 10-15 нм в пересчете на SiO2 9,0-20,0 и воду до 100. Изобретение обеспечивает повышение стабильности состава при понижении содержания в нем ионов хрома (VI) и позволяет получить электроизоляционное покрытие с хорошим товарным видом, обладающее повышенными физико-механическими и магнитными свойствами, высокой магнитной активностью. 1 табл., 11 пр.

Формула изобретения RU 2 489 518 C1

Состав для получения электроизоляционного покрытия на поверхности анизотропной электротехнической стали, содержащий ионы фосфата, алюминия, магния, хрома (VI) и воды, отличающийся тем, что он дополнительно содержит ионы хрома (III) и коллоидную двуокись кремния с диаметром мицелл 10-15 нм, мас.%:
ионы фосфата (в пересчете на P2O5) 6,6-14,6 ионы алюминия 0,3-0,71 ионы магния 0,41-0,92 ионы хрома (VI) 0,5-2,0 ионы хрома (III) 0,5-1,5 коллоидная двуокись кремния (в пересчете на SiO2) 9,0-20,2 вода до 100

Документы, цитированные в отчете о поиске Патент 2013 года RU2489518C1

СПОСОБ И СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 2007
  • Шибаева Нина Валерьевна
  • Чумаевский Виктор Алексеевич
RU2371518C2
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 2001
  • Маслова Е.Х.
  • Чумаевский В.А.
  • Голубков П.А.
  • Пятницкий А.Г.
  • Лавров В.И.
RU2209255C2
WO 2009020134 A1, 12.02.2009
US 3856568 A, 24.12.1974
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОГО ПОКРЫТИЯ 1995
  • Краснова Т.М.
  • Чумаевский В.А.
RU2098514C1

RU 2 489 518 C1

Авторы

Чумаевский Виктор Алексеевич

Мирошниченко Юлия Сергеевна

Беляева Ольга Александровна

Даты

2013-08-10Публикация

2012-04-19Подача