Изобретение относится к области нанотехнологий и наноматериалов, именно способ получения флуоресцентных меток на основе биосовместимых и биодеградируемых наночастиц кремния для in vivo применения, позволяющий получать массовые количества наноматериала.
В настоящее время одним из наиболее распространенных подходов к решению данной проблемы является использование полупроводниковых квантовых точек на основе CdSe, CdTe. Длина волны максимума флуоресценции зависит как от размера ядра, так и природы полупроводника. Данному требованию удовлетворяют следующие полупроводники: CdSe, CdTe, PbSe, PbS, InP. Несколько уступая лучшим флуоресцентным меткам в квантовом выходе флуоресценции (~70% при комнатной температуре), нанокристаллы превосходят их на несколько порядков в величинах сечения поглощения возбуждающего света. В результате яркость свечения нанокристаллов оказывается настолько высокой, что позволяет детектировать единичные объекты с помощью обычного флуоресцентного микроскопа.
В последнее время разработаны методики синтеза фотостабильных нанокристаллов InP, InP/ZnS, но низкая яркость флуоресценции и широкое распределение частиц по размерам ограничивают их использование в биохимии. Недостатками CdSe, CdTe, PbSe, PbS, InP, InP/ZnS также является токсичность входящих в состав квантовых точек ионов, что требует наращивания специальных защитных оболочек. Настороженное отношение к использованию квантовых точек in vivo было высказано недавно в ряде работ: методом ICP MS было продемонарировано накопление кванювых точек в организме животного после введения их внутривенно. Кроме того, нанометровый размер кристаллов может привести к их пассивному либо активному транспорту и накоплению в клеточных органеллах, приводя к непредсказуемым отложенным эффектам. Поэтому поиск квантовых точек, имеющих альтернативный химический состав и не содержащих токсических ионов, является исключительно актуальным. В связи с этим повышенный интерес вызывают квантовые точки на основе нанокремния.
Наиболее близким по совокупности существенных признаков к заявляемому способу получения флуоресцентных меток на основе биодеградируемых наночастиц кремния для in vivo применения является способ, предложенный в работе [Park J.-H., Gu L., von Maltzahn G., Ruoslahti E., Bhatia S.N., Sailor M.J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications // Nature materials. 2009. V.8, №4. P.331-336]. В данной работе флуоресцентные наночастицы пористого кремния получали методом электрохимического травления кремниевой подложки в спиртовом растворе плавиковой кислоты, отщеплением пористой кремниевой пленки, последующей обработкой ультразвуком и выделением полученных пористых наночастиц кремния путем фильтрации через мембрану с размером пор 0,22 мкм. Для активации флуоресценции, полученные пористые наночастицы инкубировали в водной среде в течение двух недель. Сразу после формирования пористого слоя оборванные связи кремния на поверхности пор пассивированы главным образом водородом, который со временем заменяется на кислород. Во время стадии активации, в протравленных водородом порах происходит наращивание оксида кремния. Такие структуры проявляют сильную люминесценцию, связанную с дефектами, локализованными на поверхности раздела кремний - диоксид кремния.
Недостатками изобретения являются: большой размер частиц - 126 нм и мономодальное распределение спектральной интенсивности флуоресценции в области 650-900 нм, что не позволяет проводить спектральное кодирование флуоресцентных меток с разными длинами волн флуоресценции в разных соотношениях.
Техническим результатом настоящего изобретения является способ получения гидрофильных биосовместимых и биодеградируемых флуоресцентных меток нанокристаллического кремния, обладающих устойчивой яркой люминесценцией с максимумами интенсивности в области 676 нм и 774 нм, устойчивых к повышенным температурам (до 220°C) без использования токсичных веществ в процессе их синтеза.
Указанный технический результат достигается за счет того, что для получения гидрофильных флуоресцентных меток используют реакцию диспропорционирования монооксида кремния при температуре 950°С в атмосфере воздуха с последующим взаимодействием наночастиц кремния с диметилсульфоксидом, приводящим к образованию двух ансамблей наночастиц со средними размерами 2,0-2,5 нм и узкой функцией распределения по размерам - от 1,3 до 4,0 нм, имеющих максимумы фотолюминесценции при 650 нм и 730 нм.
Используется следующая реакция диспропорционирования тонкоизмельченного монооксида кремния при температуре 950°С для получения нанокристаллического кремния:
где n - число атомов кремния в наночастице кремния (n=29 для наночастицы кремния диаметра 1,0 нм; n=286 для наночастицы кремния диаметра 2,0 нм), с последующим растворением и вымыванием диоксида кремния в подкисленном водном растворе.
Образование нанокристаллического кремния происходит в толще кристаллов, образующихся при спекании монооксида кремния, аналогично распаду твердых растворов, что эффективно защищает нанокристаллический кремний от окисления воздухом. Вместе с тем, отжиг в атмосферном воздухе приводит к образованию примесных центров (Si=O) и (Si-O-Si), энергетические уровни которых лежат внутри запрещенной зоны наночастиц кремния размера 2,0-2,5 нм, что позволяет сдвинуть максимум флуоресценции в требуемую для флуоресцентных меток красную область спектра. Сразу после отжига наблюдают люминесценцию полученного нанокремния при воздействии УФ-излучения в красной области спектра.
Для стабилизации и гидрофилизации поверхности нанокристаллов кремния отожженную смесь в тефлоновом стакане заливают концентрированной плавиковой кислотой, слегка подогревают и помещают в ультразвуковую ванну для интенсификации травления. После растворения побочных продуктов при 313К твердые частицы осаждают центрифугированием и промывают 2 раза этанолом. Полученный люминесцирующий осадок взмучивают и переносят в кварцевую пробирку, содержащую диметилсульфоксид. Пробирку нагревают до 150°C для полного испарения этилового спирта, еще раз взмучивают в ультразвуковой ванне и быстро нагревают до температуры кипения диметилсулфоксида (~189°C). При этом в течение 30 с наблюдают потемнение взвеси и значительное усиление яркости люминесценции. Процесс может быть описан следующим уравнением реакции:
где m - число атомов водорода на поверхности наночастицы (m<n; m=24 для наночастицы кремния диаметра 1,0 нм). Основу золя составляют гидрофильные наночастицы кремния в диметилсульфоксиде, который, как известно, является нетоксичным веществом. Полученная при коагуляции коллоидного раствора кремниевая нанопудра в зависимости от режимов реакции может состоять из частиц с размером до нескольких нанометров в диаметре и имеет выраженную кристаллическую структуру центрального ядра (Фиг.1 и 2).
Наночастицы кремния с размером 2,0-2,5 нм имеют интенсивную собственную люминесценцию в оранжево-красной области спектра с максимумами 676 нм и 774 нм (Фиг.3). Квантовый выход флуоресценции полученных биометок наночастиц составляет более 15%.
Из Фиг.3 отчетливо видно, что предложенный способ получения флуоресцентных биометок дает два ансамбля частиц нанокремния, имеющих максимум флуоресценции при 676 нм (кривая 2) и 774 нм (кривая 3). Флуоресцентные метки, имеющие спектр люминесценции на различных длинах волн позволяют реализовать спектрально кодированные микрочастицы, получение которых открывает пути для разработки тест-систем для экспрессного многопараметрического анализа большого числа биологических объектов, основанного на технике микрочипов. Одним из преимуществ использования в качестве флуорофоров НК с разными длинами волн эмиссии является возможность возбуждения всех кодирующих компонентов одним монохроматическим источником. Для получения раствора флуоресцентных меток проба исходного раствора высушивается при пониженном давлении и разбавляется дистиллированной водой.
Разработка достаточно простого способа получения биосовместимых и биодеградируемых флуоресцентных меток на основе нанокристаллического кремния, обладающего яркой устойчивой фотолюминесценцией в видимой области спектра в массовых количествах открывает возможности их применения в медицине и биологии для флуоресцентной диагностики, фотодинамической и фототермической терапии, фотохимической стерилизации запасов крови, а также в экологии для очистки воды от органических загрязнений и патологической микрофлоры.
Уникальные оптические свойства нанокремния, такие как фотостабильность и широкий диапазон полос флуоресценции в зависимости от диаметра ядра наночастицы, в том числе и в ближнем инфракрасном диапазоне, делают их привлекательными для использования в качестве in vivo маркеров при визуализации глубоко расположенных тканей и органов. Другой вариант использования полученных флуоресцентных меток - проточная цитофлуориметрия, позволяющая анализировать спектральные свойства каждой из проходящих через детектор наночастицы. Использование спектрально кодированных наночастиц предполагает анализ каждой флуоресцентной метки для выявления присутствия в анализируемой пробе каждого из детектируемых объектов.
Данное изобретение найдет широкое применение в медицине для диагностики опухолей различных типов. Например, для визуализации глубоко расположенных опухолей в условиях in vivo длина волны возбуждения флуоресценции наночастиц кремния должна быть выбрана в ближне-красной области спектра для того, чтобы получить максимальное поглощение излучения тканью и минимальное поглощение такими хромофорными белками, как, например, гемоглобин.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ, ОБЛАДАЮЩЕГО ЯРКОЙ УСТОЙЧИВОЙ ФОТОЛЮМИНЕСЦЕНЦИЕЙ | 2009 |
|
RU2411613C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДНОЙ СУСПЕНЗИИ БИОСОВМЕСТИМЫХ ПОРИСТЫХ КРЕМНИЕВЫХ НАНОЧАСТИЦ | 2012 |
|
RU2504403C1 |
Композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния | 2017 |
|
RU2671702C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИСПЕРСИИ 2D-НАНОМОНОКРИСТАЛЛОВ КРЕМНИЯ В ОРГАНИЧЕСКОМ РАСТВОРИТЕЛЕ ДЛЯ ФОТОВОЛЬТАИЧЕСКИХ ПРИМЕНЕНИЙ | 2016 |
|
RU2672160C2 |
ТЕРМОСТОЙКИЙ ПОЛИМЕРНЫЙ НАНОКОМПОЗИТ, ОБЛАДАЮЩИЙ ЯРКОЙ ФОТОЛЮМИНЕСЦЕНЦИЕЙ | 2010 |
|
RU2434045C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ГАЗОВОГО СЕНСОРА ДЛЯ ДЕТЕКТИРОВАНИЯ МОНООКСИДА УГЛЕРОДА СО БЕЗ НАГРЕВАНИЯ | 2013 |
|
RU2544272C2 |
СПОСОБ ФОРМИРОВАНИЯ УПОРЯДОЧЕННОГО МАССИВА НАНОКРИСТАЛЛОВ ИЛИ НАНОКЛАСТЕРОВ КРЕМНИЯ В ДИЭЛЕКТРИЧЕСКОЙ МАТРИЦЕ | 2017 |
|
RU2692406C2 |
Способ одновременной диагностики и терапии онкологических заболеваний в эксперименте | 2018 |
|
RU2701106C1 |
СПОСОБ МЕЖФАЗНОГО ПЕРЕНОСА НЕОРГАНИЧЕСКИХ КОЛЛОИДНЫХ ПОЛУПРОВОДНИКОВЫХ НАНОКРИСТАЛЛОВ | 2014 |
|
RU2583097C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКОНТЕЙНЕРОВ ДЛЯ ХИМИОТЕРАПЕВТИЧЕСКИХ ПРОТИВООПУХОЛЕВЫХ ПРЕПАРАТОВ | 2018 |
|
RU2722745C1 |
Изобретение относится к области наноматериалов. Предложен способ получения флуоресцентных меток на основе биосовместимых и биодеградируемых наночастиц кремния для in vivo применения реакцией диспропорционирования монооксида кремния при температуре 950°C в атмосфере воздуха с последующим взаимодействием полученных наночастиц кремния с диметилсульфоксидом. Предложенный способ позволяет получить два ансамбля наночастиц размером 2,0-2,5 нм, имеющих максимумы фотолюминисценции при 676 нм и 774 нм. Технический результат - получение гидрофильных биосовместимых и биодеградируемых флуоресцентных меток нанокристаллического кремния, обладающих устойчивой яркой люминесценцией и узкой функцией распределения по размерам, устойчивых к повышенным температурам (до 220°C) без использования токсичных веществ в процессе их синтеза. Полученные наночастицы применимы в качестве in vivo маркеров при визуализации глубоко расположенных тканей и органов.
Способ получения флуоресцентных меток на основе биосовместимых и биодеградируемых наночастиц кремния для in vivo применения, отличающийся тем, что для получения гидрофильных флуоресцентных меток используют реакцию диспропорционирования монооксида кремния при температуре 950°C в атмосфере воздуха с последующим взаимодействием наночастиц кремния с диметилсульфоксидом, приводящим к образованию двух ансамблей наночастиц размером 2,0-2,5 нм, имеющих максимумы фотолюминесценции при 676 нм и 774 нм.
Ji-Ho Park et al | |||
Biodegradable luminescent porous silicon nanoparticles for in vivo applications | |||
Nature Materials, 2009, v.8, №4, p.331-336 | |||
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ, ОБЛАДАЮЩЕГО ЯРКОЙ УСТОЙЧИВОЙ ФОТОЛЮМИНЕСЦЕНЦИЕЙ | 2009 |
|
RU2411613C1 |
US 20110300222 A1, 08.12.2011. |
Авторы
Даты
2013-08-27—Публикация
2012-03-02—Подача