Изобретение относится с области комплексной переработки остатков доманиковых образований (черносланцевых свит), обогащенных органическим веществом (ОВ) и содержащих кремний, алюминий, натрий, калий, ванадий, уран, редкоземельные и другие металлы.
Получение алюмокалиевых квасцов K2SO4·(Al2SO4)3·24H2O (АКК) основано на малой растворимости при невысоких температурах. АКК представляют собой бесцветные октаэдрические кристаллы плотностью 1,04 г/см3. При температуре 93,5°C квасцы плавятся в кристаллизационной воде, при 120°C отдают 10 молекул воды, при 200°C образуют пористую массу безводных квасцов. Они могут быть выделены при добавлении сульфата калия к концентрированному горячему раствору сульфата алюминия (19-21 г/л А1). В процессе охлаждения раствора до температуры 15-25°C выпадают кристаллы АКК.
Недостатком этой технологии является то, что все исходные компоненты являются дорогостоящими и дефицитными.
Известен способ получения алюмокалиевых квасцов (патент РФ №2013373, МПК 5С01Р 7/76, 1994 г.), по которому исходную руду, дробленую до крупности 7-8 мм, после обжига при температуре 550-700°C в течение 2-х часов подвергают гидрохимической обработке расчетным количеством 30%-ного раствора серной кислоты в вертикальном реакторе при температуре 95-100°C в течение 5-6-ти часов последовательно в две стадии в противотоке раствора к руде. При этом из обожженной руды извлекается в раствор 90% алюминия, натрия и калия, а нерастворимый осадок состоит из кремнезема (SiO2). Полученный при этом раствор сульфата алюминия не содержит свободной серной кислоты и очищается от солей железа и ряда других элементов методом гидротермального осаждения. Из очищенного технологического раствора выделяют АКК путем дозировки расчетного количества хлористого калия и охлаждения раствора до 25-30°C.
Основными недостатками данного способа являются высокие энергетические затраты, связанные с обжигом, многостадийность, отсутствие комплексности использования сырья.
Известен способ получения алюмокалиевых квасцов (Позин М.Е. Технология минеральных солей. Л. Химия, 1970 г., с.655-657), включающий обработку нефелинового концентрата 74-76%-ной серной кислотой в течение 1-2 минут при расходе кислоты 83-88% от теоретически необходимого количества с образованием реакционной массы, ее вызревание в течение 14-15 минут при температуре 140°С, выщелачивание полученной массы горячей водой при соотношении воды и нефелина 2:1 в течение 20-25 минут с образованием кремнеземсодержащей суспензии, отделение жидкой фазы, содержащей алюминий, калий, натрий, от твердой фазы, содержащей кремнезем и примесные минералы, введение в жидкую фазу хлорида калия, охлаждение полученного раствора с кристаллизацией квасцов (АКК) и их отделение от маточного раствора, содержащего сернокислый алюминий и поваренную соль, который можно использовать в качестве коагулянта для очистки питьевой воды или в бумажной промышленности.
Способ не предусматривает выделение кремнезема в виде высокодисперсного, высокочистого продукта и не может быть использован для сырья сложного состава, содержащего вредные металлы, например уран, ванадий и др.
Наиболее близким по технической сущности к заявляемому является способ получения алюмокалиевых квасцов (патент РФ №2350564, МПК C01F 7/76, опубл. 23.03.2009 г.), включающий обработку нефелинсодержащего сырья разбавленной 12-20% серной кислотой в течение 5-20 минут. Использование разбавленной серной кислоты обеспечивает извлечение кислоторастворимых компонентов в жидкую фазу не только алюминия, натрия и калия, но и кремнезема в виде ортокремниевой кислоты.
Отличительной особенностью растворенного кремнезема является его высокая склонность к полимеризации, интенсивность которой зависит от концентрации кремнезема, температуры и продолжительности выдержки раствора.
Основной недостаток способа - неконтролируемое осаждение кремнезема как на стадии выщелачивания, так и кристаллизации АКК. Способ не позволяет удержать в растворе редкие и редкоземельных металлы (РиРЗМ).
Задачей настоящего изобретения является создание способа получения алюмокалиевых квасцов, позволяющего расширить сырьевую базу, получить углерод-кремнеземистый продукт, пригодный для производства ферросплавов, который не содержит радиоактивные металлы.
Техническим результатом изобретения является комплексное извлечение редких и редкоземельных металлов, повышение выхода АКК.
Технический результат достигается способом получения алюмокалиевых квасцов, в котором исходная руда измельчается и обрабатывается раствором серной кислоты (25-35%) в автоклаве при температуре 140-160°C, давлении 3 атм и окислительно-восстановительном потенциале Eh 350-450 мВ. Окислительно-восстановительный потенциал (ОВП) в указанных пределах Eh 350-450 мВ позволяет удерживать элементы в определенных степенях окисления и тем самым менять их технологические свойства. Значение ОВП ниже 350 мВ не желателен, так как в растворе появляется железо в степени окисления (+II), повышение ОВП более 450 мВ приводит к появлению ванадия в степени окисления (+V) и ванадий с железом (+III) осаждается в виде труднорастворимого соединения.
Выщелачивание проводят до остаточной концентрации свободной серной кислоты 45-75 г/л. Концентрация серной кислоты является оптимальной для кристаллизации АКК и позволяет удержать в растворе редкие и редкоземельные металлы. Повышение содержания серной кислоты более 75 г/л нецелесообразно в связи с перерасходом кислоты и снижением выхода АКК на операции кристаллизации, а снижение менее 45 г/л не удерживает в растворе редкие и редкоземельные металлы. Затем разделяют автоклавную суспензию на жидкую фазу, содержащую алюминий, калий, натрий, редкие и редкоземельные металлы, и твердую фазу, содержащую кремнезем и органическое вещество, т.е. углерод-кремнеземистый продукт. При этом добавляют сульфат калия в горячую жидкую фазу свободного сульфата алюминия из расчета на связывание его на 80-90% в АКК, что позволит удержать редкие и редкоземельные металлы в растворе. В растворе одновременно существует двойная соль сульфата калия и алюминия [KAl(SO4)2] и свободный сульфат алюминия. Процесс кристаллизации проводится в условиях резкого охлаждения до 15-25°C воздушным перемешиванием и охлаждением рассолом через рубашку в течение не более 2-х часов при недостатке высаливающего агента (K2SO4) в количестве 80-90% от стехиометрически необходимого для осаждения АКК и получения раствора редких и редкоземельных металлов. Кристаллы АКК отделяются на центрифуге, а маточные растворы отправляются на передел извлечения редких и редкоземельных металлов. Выход АКК в целевой продукт составляет 91-92% от содержания в сырье. Аммиачной обработкой из АКК выделяется глинозем (Al2O3), а в раствор переводятся сульфаты калия и аммония.
При упарке раствора выделяется сульфат калия (K2SO4), который используется как оборотный продукт для кристаллизации АКК.
Указанные выше особенности и преимущества заявляемого изобретения поясняются нижеследующими примерами.
Пример 1. 1000 г дробленых до крупности - 0,2 мм остатков доманиковых образований, содержащих, мас.%: Al2O3 4,2, Na2O 1,7, K2O 1,2, SiO2 75,2, OB (органическое вещество) 15,1, сумма ∑РиРЗМ 1,1, - смешивают с 1 литром раствора серной кислоты и обрабатывают в автоклаве при температуре 150°C в течение 1 часа, давлении кислорода 3 атм и Eh 350 мВ. После обработки получают 1,05 л раствора, содержащего, г/л: 41,6 Al2O3, 13,3 Na2O, 6,0 K2O, 8,3 Fe2O3, сумма ∑РиРЗМ 6,7, свободной серной кислоты 72,5. В раствор добавляют 60 г сульфата калия и охлаждают до 25°C. Алюмокалиевые квасцы отфильтровывают. Получают 349,5 г алюмокалиевых квасцов влажностью 4,5%, содержащих, мас.%: Al2O3 10,1, K2O 9,3. Извлечение алюминия в раствор составило 98,6%, а в алюмокалиевые квасцы 91,2% от его содержания в растворе. Содержание суммы ∑РиРЗМ в растворе сохранилось на уровне 6,6 г/л.
Пример 2. Способ осуществляют согласно примеру 1. Отличие заключается в том, что 1000 г дробленых до крупности - 0,2 мм остатков доманиковых образований смешивают с 1 литром раствора серной кислоты и обрабатывают при температуре 150°C в течение 2 часов, давлении кислорода 3 атм и Eh 450 мВ. После обработки получают 1 л раствора, содержащего, г/л: 41,2 Al2O3, 13,0 Na2O, 5,8 K2O, 7,2 Fe2O3, сумма ∑РиРЗМ 6,5, свободной серной кислоты 45,3. После разделения на фильтрате получают кремнезем и органическое вещество, содержащее: ванадия - 0,05%, урана <0,001%. Получают 335,5 алюмокалиевых квасцов влажностью 4,2%, содержащие, мас.%: Al2O3 10,8, K2O 9,6. Кристаллизация АКК из раствора проводится по примеру 1. Извлечение алюминия в раствор составляет 98,1%, а в алюмокалиевые квасцы 90,1% от его содержания в растворе. Содержание суммы ∑РиРЗМ в растворе сохранилось на уровне 6,3 г/л.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ОСТАТКОВ ДОМАНИКОВЫХ ОБРАЗОВАНИЙ | 2013 |
|
RU2547369C2 |
СПОСОБ ПЕРЕРАБОТКИ ЧЕРНОСЛАНЦЕВЫХ РУД С ИЗВЛЕЧЕНИЕМ РЕДКИХ МЕТАЛЛОВ | 2011 |
|
RU2493272C2 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОКАЛИЕВЫХ КВАСЦОВ | 2007 |
|
RU2350564C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЦЕННЫХ КОМПОНЕНТОВ ИЗ ПРОДУКТИВНЫХ РАСТВОРОВ ПЕРЕРАБОТКИ ЧЕРНОСЛАНЦЕВЫХ РУД | 2011 |
|
RU2493279C2 |
СПОСОБ РУДОПОДГОТОВКИ ПОЛИМЕТАЛЛИЧЕСКИХ РУД ДЛЯ ВЫЩЕЛАЧИВАНИЯ | 2013 |
|
RU2553706C2 |
Способ переработки сыннырита | 2020 |
|
RU2753109C1 |
Способ переработки сыннырита на сульфаты калия, магния и глинозем | 2020 |
|
RU2749824C1 |
СПОСОБ ПЕРЕРАБОТКИ СЫННЫРИТА С ПОЛУЧЕНИЕМ КАЛИЙНЫХ УДОБРЕНИЙ И ГЛИНОЗЕМА | 2023 |
|
RU2820256C1 |
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОКАЛИЕВОГО НЕФЕЛИН-ПОЛЕВОШПАТОВОГО СЫРЬЯ | 2019 |
|
RU2707335C1 |
СПОСОБ ПЕРЕРАБОТКИ ЧЕРНОСЛАНЦЕВЫХ РУД | 2011 |
|
RU2493273C2 |
Изобретение может быть использовано в химической промышленности. Для получения алюмокалиевых квасцов подготавливают сырье, в качестве которого используют остатки доманиковых образований, содержащие алюминий, кремнезем, органическое вещество и включающие редкие и редкоземельные элементы. Проводят выщелачивание кислоторастворимых компонентов сырья в автоклаве раствором серной кислоты до ее остаточной концентрации 45-75 г/л. Полученную суспензию разделяют на жидкую фазу, содержащую алюминий, калий, натрий, редкие металлы, и твердую фазу, содержащую кремнезем и органическое вещество. В горячую жидкую фазу добавляют сульфат калия, охлаждают полученный раствор и проводят кристаллизацию алюмокалиевых квасцов. Сульфат калия добавляют из расчета связывания в алюмокалиевые квасцы 80-90% свободного сульфата алюминия с удержанием в растворе редких и редкоземельных элементов. Изобретение позволяет повысить выход алюмокалиевых квасцов с одновременным комплексным извлечением редких и редкоземельных элементов и получением углерод-кремнеземистого продукта. 2 з.п. ф-лы, 2 пр.
1. Способ получения алюмокалиевых квасцов, включающий подготовку сырья, обработку его раствором серной кислоты, выщелачивание кислоторастворимых компонентов, разделение на жидкую фазу, содержащую алюминий, калий, натрий, редкие металлы, и твердую фазу, содержащую кремнезем и органическое вещество, добавление в горячую жидкую фазу солей калия, охлаждение полученного раствора и кристаллизацию алюмокалиевых квасцов, отличающийся тем, что в качестве сырья используют остатки доманиковых образований, содержащие алюминий, кремнезем и органическое вещество, включающие редкие и редкоземельные элементы, выщелачивание проводят в автоклаве раствором серной кислоты до ее остаточной концентрации 45-75 г/л, а в горячий раствор сульфата алюминия добавляют сульфат калия из расчета связывания в алюмокалиевые квасцы 80-90% свободного сульфата алюминия с удержанием в растворе редких и редкоземельных элементов.
2. Способ по п.1, отличающийся тем, что выщелачивание проводят при температуре 140-160°C, давлении кислорода 3 атм.
3. Способ по п.1, отличающийся тем, что кристаллизацию алюмокалиевых квасцов проводят резким охлаждением в течение не более 2 часов.
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОКАЛИЕВЫХ КВАСЦОВ | 2007 |
|
RU2350564C2 |
RU 93049852 A, 27.10.1996 | |||
СПОСОБ ПЕРЕРАБОТКИ АЛУНИТОВОЙ РУДЫ НА АЛЮМОКАЛИЕВЫЕ КВАСЦЫ И СЕРНОКИСЛЫЙ АЛЮМИНИЙ | 1991 |
|
RU2013373C1 |
CN 101302024 A, 12.11.2008; | |||
ХИМИЧЕСКАЯ ЭНЦИКЛОПЕДИЯ под ред | |||
Кнунянца И.Л., Москва, Советская энциклопедия, 1990, т | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Шахтно-ступенчатая топка с цепной решеткой для торфа | 1920 |
|
SU443A1 |
Авторы
Даты
2015-01-10—Публикация
2013-02-18—Подача