СПОСОБ УПАРИВАНИЯ ЖИДКИХ ОТХОДОВ Российский патент 2013 года по МПК B01D1/00 F23G7/04 

Описание патента на изобретение RU2494787C1

1. Область техники

Изобретение относится к промышленной энергетике, а именно к способам упаривания жидких отходов и может быть использовано в различных отраслях промышленности, в частности, для получения минеральных солей из их водных растворов.

2. Уровень техники

Известны способы концентрирования растворов минеральных солей выпарными аппаратами, использующими в качестве греющего агента перегретый пар. Такие установки связаны с созданием паросилового хозяйства и соответствующим загрязнением природной среды (отходы водоподготовки, выброс в атмосферу дымовых газов, содержащих до 400 мг/м3 окислов азота и пр.). В выпарных установках 1 тонна греющего пара испаряет примерно 2,5 тонны воды.

Более современным теплоиспользующим оборудованием являются аппараты погружного горения (АПГ), характеризующиеся барботажными процессами, протекающими между продуктами сгорания, образующимися при сгорании газообразного или жидкого топлива в погружной горелке, расположенной так, чтобы ее открытое сопло было помещено на некоторую глубину в жидкость. Благодаря этому, продукты сгорания, барботируя в жидкости, разбиваются на газовые пузырьки, образующие при всплывании большую межфазную поверхность тепло- и массообмена.

Интенсивное испарение раствора достигается за счет полного насыщения газовых пузырьков парами воды за счет теплоты, отдаваемой жидкости при непосредственном контакте с огнем, причем интенсивное испарение жидкости происходит при температуре на 15-16°С ниже температуры кипения.

Характерно, что при равновесной температуре газовые пузырьки полностью насыщаются водяным паром и уходят из водных растворов в виде парогазовой смеси с температурой на 1-2°С выше температуры испарения. Поэтому при непосредственном контакте продуктов сгорания с жидкостью процессы тепло- и массообмена протекают с резким снижением теплопотерь. Коэффициент полезного использования теплоты сгорания топлива составляет около 95%. При этом горение топлива (газ, мазут и пр.) происходит в туннеле горелки и выбросы окислов азота остаются на уровне дымовой трубы котельной, в объеме 300 мг/м3.

Известен способ работы установки для выпаривания жидких отходов, содержащей емкость с жидкими отходами, камеру пульсирующего горения, имеющую перфорированную резонансную трубу, установленную коаксиально емкости, и сепарационное устройство, установленное в кольцевом пространстве между стенками емкости и резонансной трубы под водной частью камеры горения (АС СССР №937893. М.кл.3: F23G 7/04, 23.06.82 г.).

Недостатком данного аналога является повышенный капельный унос, из-за которого снижается эффективность процесса упаривания.

Известен принятый за прототип заявленного предложения способ упаривания жидких отходов, реализуемый установкой по а.с. СССР №1709154. М.кл.3: F23G 7/04, 1980 г., включающий упарку прямым воздействием пламени, полученного в результате пульсирующего горения, кристаллизацию и отделение твердой фазы из упаренного раствора с выделением чистой воды из парогазовой смеси.

Недостатком прототипа является ограниченная эффективность работы за счет большого расхода топлива (0,15÷0,2 кг у.т./кг упаренного раствора) и ограниченность надежности работы.

3. Представление изобретения

Задачей изобретения является повышение эффективности процесса упаривания жидких отходов.

Поставленная задача обеспечивается тем, что способ упаривания жидких отходов включает упарку водных раствором минеральных солей прямым воздействием пламени, полученным в результате пульсирующего с резонансной частотой горения топлива, кристаллизацию и отделение твердой фазы из упаренного раствора с выделением чистой воды из парогазовой смеси, подогревающей раствор, поступающий на упарку.

Используют частоту пульсирующего пламени 60-80 Гц.

Процесс проводят в непрерывном или периодическом режимах.

4. Краткое описание чертежа

На прилагаемой фигуре представлена принципиальная технологическая схема получения минеральных солей из их водных растворов с применением пульсирующего горения топлива, где обозначено: 1 - расходная емкость; 2 - камера пульсирующего горения; 3 - резонансная труба, опущенная в испаряемую жидкость на 1/2-1,0 диаметра; 4 - барботажная камера, представляющая собой емкость с конусным днищем, по продольной оси которой установлена резонансная труба 3 с камерой пульсирующего горения 2, расположенной в верхней части резонансной трубы 3 вне барботажной камеры 4; 5 - циркуляционная емкость; 6 - центробежный насос; 7 - узел очистки от каплеуноса; 8 - теплообменник; 9 - мешалка.

Работает установка следующим образом.

Исходный раствор минеральных солей, в качестве морской или другой воды, в виде, например, отходов химического предприятия, подают в теплообменник 8, в котором его подогревают парогазовой смесью, поступающей через узел очистки от каплеуноса 7 из барботажной камеры 4. Подогретый исходный раствор подают в расходную емкость 1, откуда он поступает в барботажную камеру 4, в нижнюю часть которой по резонансной трубе 3 поступают продукты горения топлива из камеры пульсирующего горения 2. Жидкая фракция барботажа поступает в циркуляционную емкость 5, где она перемешивается мешалкой 9 для однородности плотности и температуры слоев, откуда продукт подают насосом 6 на фильтрацию и одновременно - в расходную емкость 1 для более глубокой переработки.

Используют резонансную частоту пульсирующего пламени 60-80 Гц.

В зависимости от условий поступления сырья и других технологических причин, процесс ведут в непрерывном или периодическом режимах.

5. Примеры реализации изобретения

Пример 5.1.

На опытную установку подавали 98 л/час дистиллерной жидкости (жидкий отход производства соды) с содержанием NaCl и CaCl2 10% (остальное вода) при удельной плотности 1,159 г/см3. Удельный расход топлива 0,09 кг у.т./кг дистиллерной жидкости. Коэффициент расхода воздуха 1,05, содержание СО в дымовых газах 0,02% об., окислов азота 82 мг/м3. Процесс закончен при содержании в маточнике 39% CaCl2 (удельная плотность 1,396 г/см3) и полном выпадении NaCl в осадок.

Полученная поваренная соль (после однократной промывки) соответствует пищевой поваренной соли по химическому и фракционному составу.

Хлористый кальций возможно сразу использовать в качестве антигололедного средства или, при переделе, получить кристаллический продукт.

Получение хлористого кальция описанным способом оказалось на 50 и более процентов выгоднее известного химического процесса, а получение поваренной соли в 2 раза экономичнее процессов ее получения в корпусных выпарных аппаратах.

Пример 5.2.

На опытную установку подавали 96 л/час маточника от сгущенной части экстракционной фосфорной кислоты, нейтрализованной аммиаком, при удельной плотности маточника 1,22 г/см3. Коэффициент расхода воздуха 1,1, содержание СО в дымовых газах 0,015% об., окислов азота 85 мг/м3. Удельный расход топлива 0,09 кг у.т./кг отхода. Процесс закончен при удельной плотности 1,48 г/см. Наблюдается выпадение крупных кристаллов монофосфата аммония. При исследовании под микроскопом кристаллы оказались в 1,4-1,5 раза крупнее кристаллов, полученных при проведении химического процесса получения монофосфата аммония.

Пример 5.3.

На опытную установку подавали 98 л/час раствора сульфата меди с удельной плотностью 1,22 г/см3. Коэффициент расхода воздуха 1,05, содержание СО в дымовых газах 0,02% об., окислов азота 82 мг/м3. Удельный расход топлива 0,09 кг у.т./кг. Процесс закончен при достижении удельной плотности 1,41 г/см3. Наблюдается выпадение крупных кристаллов сульфата меди. Скорость оседания осадка более 15 м/час. Легко отделяется от маточника, без взвеси.

Образование крупных кристаллов при проведении процесса концентрирования на погружной пульсационной установке указывает на способность данного процесса резко уменьшить Z-потенциал молекул целевого продукта, что способствует адсорбции молекул и появлению крупных образований кристаллов.

Пример 5.4.

На опытную установку подавали 96 л/час очищенного раствора поваренной соли, добытого из подземной скважины в районе г.Новомосковска (Тульская область). Содержание NaCl 308 г/л. Коэффициент расхода воздуха 1,05-1,07, содержание СО в дымовых газах 0,015% об., окислов азота 80 мг/м. Удельный расход топлива 0,09 кг у.т./кг упариваемой среды. При достижении удельной плотности более 1,4 г/см3 начинается активное выпадение NaCl в осадок. Полученная поваренная соль достигает пищевых кондиций. Анализ маточника и полученной поваренной соли после выпарки наличия углерода не обнаружил, что указывает на полноту сгорания топлива в пульсационном режиме.

6. Технические результаты

Предлагаемый способ упаривания жидких отходов в 1,5 и более раз эффективнее по технико-экономическим показателям традиционных способов упаривания известными выпарными аппаратами при более высоких качестве продукта и надежности технологических процессов. Такой результат обеспечивает заявленная совокупность признаков, одним из важных элементов которой является использование в заявленном предложении нагретой камерой горения парогазовой смеси, подаваемой из барботажной камеры в теплообменник, из которого подогретый исходный раствор идет во все технологические этапы процесса. При этом образование конденсата (чистой воды) идет с выделением тепла, равного количеству теплоты, затраченной на испарение исходного раствора, что, в свою очередь, увеличивает эффективность последующих процессов, при которых получают, в частности, чистую воду, которую целесообразно использовать для получения растворов необходимых концентраций непосредственно при выпарке.

Похожие патенты RU2494787C1

название год авторы номер документа
Установка для термического обезвреживания жидких отходов 1990
  • Яковлев Владимир Иванович
  • Чернобай Леонид Сергеевич
  • Гришечкин Валентин Сергеевич
  • Гинак Анатолий Иосифович
  • Панов Геннадий Алексеевич
  • Морозов Юрий Иванович
  • Киселевская Алла Федоровна
SU1716258A1
УСТАНОВКА ДЛЯ ТЕРМИЧЕСКОГО ОБЕЗВРЕЖИВАНИЯ ЖИДКИХ ОТХОДОВ 2005
  • Яковлев Владимир Иванович
  • Иванов Алексей Юрьевич
  • Мачигин Валерий Сергеевич
  • Яковлева Любовь Владимировна
  • Банин Олег Валентинович
  • Михнюк Олеся Константиновна
RU2289066C1
УСТАНОВКА ДЛЯ ТЕРМИЧЕСКОГО ОБЕЗВРЕЖИВАНИЯ ЖИДКИХ ОТХОДОВ 2006
  • Яковлев Владимир Иванович
  • Иванов Алексей Юрьевич
  • Роман Егор Васильевич
  • Яковлева Любовь Владимировна
  • Банин Олег Валентинович
  • Воеводин Сталив Иванович
  • Трифонов Николай Николаевич
  • Злотин Борис Николаевич
RU2320924C2
Установка для термического обезвреживания жидких отходов 1980
  • Чернобай Леонид Сергеевич
  • Яковлев Владимир Иванович
  • Терентьев Владимир Дмитриевич
  • Зуев Михаил Егорович
  • Белорусский Виталий Григорьевич
SU887885A1
Способ огневого обезвреживания сточной воды 1977
  • Бернадинер Михаил Наумович
  • Кацнельсон Леонид Овсеевич
  • Житницкий Владимир Моисеевич
SU685878A2
СПОСОБ ТЕРМИЧЕСКОГО ОБЕЗВРЕЖИВАНИЯ ЖИДКИХ ОТХОДОВ 1986
  • Багрянцев Г.И.
  • Котлярова Р.В.
  • Черников В.Е.
RU2012840C1
Установка для термического обезвреживания жидких отходов 1980
  • Яковлев Владимир Иванович
  • Чернобай Леонид Сергеевич
  • Терентьев Владимир Дмитриевич
  • Зуев Михаил Егорович
  • Белорусский Виталий Григорьевич
  • Дон Николай Романович
SU962723A1
Установка для термического обезвреживания жидких отходов 1983
  • Яковлев Владимир Иванович
  • Чернобай Леонид Сергеевич
  • Терентьев Владимир Дмитриевич
  • Погребняк Анатолий Петрович
  • Чечеткин Павел Иванович
  • Трапезов Валерий Егорович
SU1138603A2
Установка для упаривания жидких отходов 1988
  • Чернобай Леонид Сергеевич
  • Яковлев Владимир Иванович
  • Терентьев Владимир Дмитриевич
  • Трошкин Станислав Николаевич
  • Броневой Владимир Владиславович
  • Коновал Иосиф Владимирович
SU1709154A2
Способ термического обезвреживания жидких отходов 1988
  • Багрянцев Геннадий Иванович
  • Постникова Лилия Альбертовна
SU1545026A1

Иллюстрации к изобретению RU 2 494 787 C1

Реферат патента 2013 года СПОСОБ УПАРИВАНИЯ ЖИДКИХ ОТХОДОВ

Изобретение относится к физико-химической обработке водных растворов минеральных солей, а именно к способам упаривания жидких отходов. Способ упаривания жидких отходов включает упарку водных растворов минеральных солей прямым воздействием пламени, полученным в результате пульсирующего с резонансной частотой горения топлива, кристаллизацию и отделение твердой фазы из упаренного раствора с выделением чистой воды из парогазовой смеси, подогревающей раствор, поступающий на упарку. Технический результат заключается в повышении эффективности процесса упаривания жидких отходов. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 494 787 C1

1. Способ упаривания жидких отходов, включающий упарку водных растворов минеральных солей прямым воздействием пламени, полученным в результате пульсирующего с резонансной частотой горения топлива, кристаллизацию и отделение твердой фазы из упаренного раствора с выделением чистой воды из парогазовой смеси, подогревающей раствор, поступающий на упарку.

2. Способ по п.1, отличающийся тем, что используют резонансную частоту пульсирующего пламени 60-80 Гц.

3. Способ по п.1 или 2, отличающийся тем, что процесс проводят в непрерывном или периодическом режимах.

Документы, цитированные в отчете о поиске Патент 2013 года RU2494787C1

Установка для упаривания жидких отходов 1988
  • Чернобай Леонид Сергеевич
  • Яковлев Владимир Иванович
  • Терентьев Владимир Дмитриевич
  • Трошкин Станислав Николаевич
  • Броневой Владимир Владиславович
  • Коновал Иосиф Владимирович
SU1709154A2
Способ огневого обезвреживания сточных вод,содержащих органические и минеральные вещества 1978
  • Бернадинер Михаил Наумович
  • Кацнельсон Леонид Овсеевич
  • Кочкина Наталия Николаевна
SU752121A1
SU 9378993, 11.08.1980
Устройство для термического обезвреживания сточных вод 1981
  • Жданов Виктор Андреевич
SU983384A1
УСТРОЙСТВО для ПЕРЕДАЧИ-ПРИЕЛ1А СОСТАВНЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ 1971
SU428564A1
Установка для наклеивания обоев 1989
  • Черноскутов Валерий Анатольевич
SU1654494A1
WO 2001088438 A1, 22.08.2001.

RU 2 494 787 C1

Авторы

Махов Сергей Владимирович

Князев Евгений Владимирович

Морозов Юрий Иванович

Яковлев Владимир Иванович

Крыщенко Константин Иванович

Чавдаров Анатолий Валентинович

Даты

2013-10-10Публикация

2012-03-28Подача