СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО РАСЩЕПЛЕНИЯ ЛИГНИНА НА АЛМАЗНОМ ЭЛЕКТРОДЕ Российский патент 2013 года по МПК C25B3/02 

Описание патента на изобретение RU2495157C2

Изобретение касается способа электрохимического расщепления лигнина с помощью алмазного электрода и способа получения ванилина и его производных с помощью электрохимического расщепления лигнина в растворе со значением pH≤11.

Лигнин представляет собой высокомолекулярное, ароматическое вещество, которое заполняет в одревеснелых растениях пространство между мембранами клеток и способствует образованию древесины. Содержание лигнина в высушенной хвойной древесине составляет 27-33%, в древесине лиственных пород - 22%.

Лигнин рассматривается в качестве высокомолекулярного производного фенилпропана. В зависимости от вида древесины фенильное кольцо замещается не менее, чем 2 метоксигруппами и пропановыми единицами с гидроксильными группами. В древесине хвойных пород преимущественно находится гваяцил-тип, в древесине лиственных пород, кроме того, присутствуют сирингил- и кумар-типы. Благодаря различным возможностям соединения наряду с другими также образуются лигнан- и кумарин-структуры, циклический простой эфир и лактон.

Алкалилигнин применяется в Северной Америке в качестве связующего для подушек для пресса на основе древесины и целлюлозы, в качестве диспергатора для осветления раствора сахара, стабилизации эмульсии асфальта и стабилизации пены. Гораздо большая часть алкалилигнина применяется при сжигании черной щелочи в качестве источника энергии для получения целлюлозы.

Ванилин в большом объеме используется вместо дорогой натуральной ванили в качестве ароматизирующего вещества в шоколаде, кондитерских изделиях, ликерах, хлебобулочных изделиях и других сладких пищевых продуктах, а также для получения ванильного сахара. Ванилин, содержащийся в древесине, которая служит для изготовления бочек для вина, способствует его ароматизации. Маленькие количества ванилина применяются в дезодорантах, парфюмерии и для улучшения вкуса фармацевтической продукции и витаминных препаратов. Ванилин также является промежуточным продуктом при синтезе различных лекарств, как, например, L-дора, метилдора и папаверина.

В европейском патенте ЕР-В 0 245418 описано разложение лигнина для получения ванилина и таких его производных как гваякол и ацетованиллон (3-метокси-4-гидрокси-ацетофенон). При этом обрабатывается водно-щелочной раствор с применением электродов из тяжелых металлов. Обработка осуществляется с использованием токсичного органогалогенного растворителя (хлороформ). С (эко-)токсикологической точки зрения это, как и использование электродов из тяжелых металлов, очень вредно. Применение высокой концентрации, как описано в европейском патенте EP-B 0245418 B1, ведет к тому, что образуется ванилин и его производные: фенолят и производные гидроксибензальдегида. Фенолят и производные гидроксибензальдегида ванилина все-таки очень чувствительны к окислительным процессам, которые протекают в щелочной среде. Поэтому перед обработкой нужно провести нейтрализацию и, следовательно, получение ванилина требует повышенных расходов на обработку.

Поэтому имеется большая потребность так окислительно разложить лигнин, чтобы обработка получаемых промежуточных продуктов осуществлялась с незначительными затратами и, следовательно, была дешевле по сравнению с известными способами.

Эта задача решается с помощью способа разложения лигнина с выходом производных гидроксибензальдегида и/или производных фенола более 5%, причем водный раствор или суспензия электролизуется на алмазном электроде.

Предпочтительно согласно данному способу обрабатывается водный раствор, который имеет значение pH≤11.

Предпочтительно согласно данному способу обрабатывается водный кислый раствор.

Предпочтительно согласно данному способу применяемый алмазный электрод представляет собой борсодержащий алмазный электрод.

Предпочтительно согласно данному способу продукты разложения лигнина непрерывно удаляются из электрохимической ячейки.

Предпочтительно согласно данному способу продукты разложения лигнина удаляются с помощью перегонки с водяным паром.

Предпочтительно согласно данному способу продукты разложения лигнина удаляются с помощью непрорывной экстракции с органическим растворителем.

Предпочтительно согласно данному способу продукты разложения лигнина выбирают из гваякола, ванилина и ацетованиллона.

Лигнин, применяемый для разложения, является лигнином, известным каждому специалисту. Предпочтительно это лигнин, который содержится в следующих продуктах: солома, багасса, черная щелочь, крафт-лигнин, сульфонат лигнина и соответствующие остатки из бумажной промышленности или производства волокон. Особенно предпочтителен лигнин, содержащийся в крафт-лигнине и сульфонате лигнина.

Производные гидроксибензальдегида и/или производные фенола, образующиеся при разложении лигнина, согласно данному способу содержатся в количестве более 5%.

Производные гидроксибензальдегида и/или производные фенола, образующиеся при разложении лигнина, выбирают из гваякола, ванилина и ацетованиллона. Наиболее предпочтителен ванилин или гваякол.

Производные гидроксибензальдегида и/или производные фенола, получаемые по данному способу, непрерывно удаляют из продуктов реакции. Предпочтительно производные гидроксибензальдегида и/или производные фенола непрерывно удаляют из реакционной смеси с помощью перегонки или экстракции. Особенно предпочтительна перегонка с водяным паром.

Для проведения электролиза лигнин находится в водном растворе, причем водный раствор имеет значение pH≤11, предпочтительно ≤9, особенно предпочтителен кислый раствор. Наиболее предпочтительно значение pH≤3. Предпочтительно устанавливать значение pH≤3 с помощью неорганических кислот, хорошо растворимых в воде, таких как соляная кислота, серная кислота, азотная кислота или органических кислот, таких как пара-толуолсульфоновая кислота или смеси различных кислот. Наиболее предпочтительна серная кислота.

Для электролиза применяется ячейка для электролиза, известная специалисту, такая как разделенная или неразделенная проточная ячейка, капиллярно расщепляемая или пластинчато-штапельная ячейка. Наиболее предпочтительна неразделенная проточная ячейка. Для достижения оптимального соотношения пространство-время предпочтительна биполярная структура из многих электродов.

Предпочтительно использование для способа по изобретению в качестве анода алмазного электрода. Этот алмазный электрод содержит слой алмаза, нанесенный на материал подложки. Причем материал подложки выбирают из ниобия (Nb), кремния (Si), вольфрама (W), титана (Ti), карбида кремния, тантал (Ta), графита или керамических подложек (субоксид титана). Наиболее предпочтительны в качестве материала подложки ниобий и кремний. Слой алмаза на подложке дополняется другими элементами. Предпочтительны алмазные электроды, дополненные бором или азотом (N). Наиболее предпочтительны алмазные электроды, дополненные бором.

В качестве материала катода применяют любой традиционный материал катода с незначительным перенапряжением кислорода, выбранным из смешанного оксида RuOxTiOx, платинированного титана, никеля (Ni), молибдена (Mo) или легированной стали. Предпочтительна комбинация дополненного бором алмазного анода с легированной сталью в качестве катода. Наиболее предпочтительно применение алмазных электродов, дополненных бором или азотом. Особенно предпочтительны алмазные электроды, дополненные бором. Применяются алмазные электроды, изготовленные методом химического парофазного осаждения. Такие электроды коммерчески доступны следующими изготовителями: Condias, Itzehoe, Diaccon, Furth (Германия) или Adamant Technologies, La-Chaux-de-Fonds (Швейцария). Недорогие электроды можно изготавливать НТНР-методом (высокая температура и высокое давление путем механического нанесения на поверхность подложки в виде листа порошка промышленного алмаза) также можно использовать. Электроды HTHP-BDD изготавливает pro-aqua, Никласдорф (Австрия), их свойства описаны A. Cieciwa, R. Wuthrich и Ch. Comnellis в Electrochem. Commun. 8(2006) 375-382.

Температура согласно данному способу находится в интервале 20-150°C, предпочтительнее в интервале 90-120°C.

Согласно способу по изобретению плотность тока преимущественно равна 5-3000 мА/см2, наиболее предпочтительна 10-200 мА/см2. Чтобы избежать отложений на алмазных электродах при использовании в качестве анода и/или катода, изменяют их полярность через короткие промежутки времени. Изменение полярности осуществляют в интервале от 30 секунд до 10 минут, предпочтительнее в интервале от 30 секунд и 2 минут.

Эффективность электролиза лигнина в водном растворе на легированном бором алмазном электроде можно повысить добавлением присадки, как TiO2. TiO2 применяют преимущественно в каталитическом количестве.

Для электролиза лигнина добавляют содержащий или не содержащий металла медиатор, например, нитродисульфонат, как соль Фреми (дикалий-нитрозодисульфонат).

Для перемешивания содержимого ячейки можно применяют механические мешалки, известные специалисту, а также другие методы перемешивания с использованием ультратурбомешалки или ультразвука.

Примеры

Пример 1

Суспензия из 30 г крафт-лигнина в электролите, состоящем из 570 г разбавленной серной кислоты (0,1 М), электролизовали в неразделенной ячейке, которая располагает набором из легированного бором алмазного катода (тянутый металл, 5×10 см) и легированного бором алмазного анода (тянутый металл, 5×10 см) на расстоянии 0,5 см при плотности тока 80 мА/см2 и температуре 30°C в течение 1 часа при скорости перемешивания 9500 об/мин. Возникающее в ячейке напряжение равно 2-6 В. Водную фазу экстрагируют простым метил-трет.бутиловым эфиром, твердое вещество отсасывают и промывают простым метил-трет.бутиловым эфиром. Водную фазу многократно экстрагируют простым метил-трет.бутиловым эфиром, органическую фазу очищают, сушат и растворитель удаляют. Газо-хроматографический анализ органического исходного продукта выявил следующий типичный состав (газо-хроматография - проценты по площади): 27% гваякола, 24% ванилина, 24% ацетованиллона и 25% других соединений. Для газо-хроматографического анализа в качестве стационарной фазы применялась колонка dB 1 фирмы J&W Scientific длиной 30 м, диаметром 0,25 мм и толщиной слоя 1 мкм. Эту колонку с помощью температурной программы нагревают в течение 5 минут с 80° до 250°C при шаге 8°C. В качестве носителя газа используют гелий (He) со скоростью потока 20-30 мл/мин.

Пример 2

Осуществляют как пример 1 со следующими вариациями: 6 г крафт-лигнина, 594 г разбавленной серной кислоты (0,1 М), 3 г дикалийнитрозодисульфоната, 30 минут электролиза при температуре 25°C. Типичный состав органического экстракта (газо-хроматография - проценты по площади): 37% гваякола, 23% ванилина, 40% ацетованиллона.

Похожие патенты RU2495157C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ВАНИЛИНА ЭЛЕКТРОХИМИЧЕСКИМ ОКИСЛЕНИЕМ ВОДНЫХ РАСТВОРОВ ИЛИ СУСПЕНЗИЙ ЛИГНИНА 2012
  • Штеккер Флориан
  • Мальковский Итамар Михаэль
  • Фишер Андреас
  • Вальдфогель Зигфрид Р.
  • Регенбрехт Каролин
RU2600322C2
СПОСОБ ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ 3-КАРБОКСИ-4-ГИДРОКСИБЕНЗАЛЬДЕГИДА, СПОСОБ ПОЛУЧЕНИЯ 4-ГИДРОКСИБЕНЗАЛЬДЕГИДА, СПОСОБЫ ПОЛУЧЕНИЯ ВАНИЛИНА И ЭТИЛВАНИЛИНА 1996
  • Метивье Паскаль
RU2186055C2
СПОСОБ ИНТЕГРИРОВАННОГО ПОЛУЧЕНИЯ ЦЕЛЛЮЛОЗЫ И ПРИГОДНЫХ ДЛЯ ПОВТОРНОГО ИСПОЛЬЗОВАНИЯ НИЗКОМОЛЕКУЛЯРНЫХ ВЕЩЕСТВ 2009
  • Маххаммер Отто
  • Хенкельманн Йохем
  • Роде Вольфганг
  • Эммелут Марио
  • Гиза Соня
RU2535222C2
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛЕННЫХ ДРЕВЕСНЫХ ПРОДУКТОВ 2020
  • Дейана, Лука
  • Кордова, Армандо
  • Ибрахем, Исмаил
RU2809043C2
СПОСОБ ПОЛУЧЕНИЯ 4-ГИДРОКСИБЕНЗАЛЬДЕГИДА И ЕГО ПРОИЗВОДНЫХ 1997
  • Метивье Паскаль
RU2194032C2
СПОСОБ ПОЛУЧЕНИЯ ЗАМЕЩЕННОГО 4-ГИДРОКСИБЕНЗАЛЬДЕГИДА 1996
  • Паскаль Метивье
  • Изабель Жув
  • Кристиан Маливерней
RU2164911C2
СПОСОБ ПОЛУЧЕНИЯ АЛКОКСИФЕНОЛА И АЛКОКСИГИДРОКСИБЕНЗАЛЬДЕГИДА 2013
  • Гарель Лоран
RU2628525C2
Способ обработки гидролизного лигнина 1991
  • Бабкин Василий Анатольевич
  • Поблинков Дмитрий Борисович
  • Кошилев Николай Алексеевич
  • Шишко Александр Анатольевич
  • Иванова Надежда Викторовна
  • Горохова Виктория Григорьевна
  • Демьянович Леонид Борисович
SU1810351A1
СПОСОБ ПОЛУЧЕНИЯ АЛКОКСИГИДРОКСИБЕНЗАЛЬДЕГИДА, В СУЩЕСТВЕННОЙ СТЕПЕНИ СВОБОДНОГО ОТ АЛКИЛАЛКОКСИГИДРОКСИБЕНЗАЛЬДЕГИДА 2013
  • Гарель Лоран
  • Гайе Юбер
RU2648044C2
МОДИФИЦИРОВАННЫЙ ДРЕВЕСНЫЙ ПРОДУКТ И СПОСОБ ПРОИЗВОДСТВА УПОМЯНУТОГО ПРОДУКТА 2018
  • Флекенштайн, Марко
  • Бизикс, Владимирс
  • Милитц, Хольгер
  • Май, Карстен
  • Майес, Дункан
  • Пюннёнен, Янне
RU2765891C2

Реферат патента 2013 года СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО РАСЩЕПЛЕНИЯ ЛИГНИНА НА АЛМАЗНОМ ЭЛЕКТРОДЕ

Изобретение относится к способу разложения лигнина, в котором водный раствор или суспензию лигнина электролизуют на алмазном электроде в кислых условиях и получаемые в качестве продуктов разложения лигнина производные гидроксибензальдегида и/или производные фенола непрерывно удаляют из электрохимической ячейки. Технический результат заключается в том, чтобы обработка получаемых промежуточных продуктов осуществлялась с незначительными затратами и, следовательно, была дешевле по сравнению с известными способами. 5 з.п. ф-лы, 2 пр.

Формула изобретения RU 2 495 157 C2

1. Способ разложения лигнина, в котором водный раствор или суспензию лигнина электролизуют на алмазном электроде в кислых условиях и получаемые в качестве продуктов разложения лигнина производные гидроксибензальдегида и/или производные фенола непрерывно удаляют из электрохимической ячейки.

2. Способ по п.1, в котором электролизуют водный раствор или суспензию при pH≤3.

3. Способ по п.1, в котором используемый алмазный электрод представляет собой легированный бором алмазный электрод.

4. Способ по п.1, в котором получаемые продукты разложения лигнина удаляют с помощью перегонки с водяным паром.

5. Способ по п.1, в котором получаемые продукты разложения лигнина удаляют с помощью непрерывной экстракции органическим растворителем.

6. Способ по одному из пп.1-5, в котором получаемые продукты разложения лигнина представляют собой гваякол, ванилин и ацетованиллон.

Документы, цитированные в отчете о поиске Патент 2013 года RU2495157C2

УСТРОЙСТВО ДЛЯ ЗАГЛУШКИ ПОЛЫХ ИЗДЕЛИЙ 0
SU245418A1
Морская буровая платформа 1989
  • Михаленко Евгений Борисович
  • Трофимов Виктор Яковлевич
  • Шхинек Карл Натанович
SU1666639A1
P
PARPOT ET AL., Biomass conversion: attempted electrooxidation of lignin for vanillin production, J
APPL
ELECTROCHEM., 2000, v.30, N6, p.727-731
СПОСОБ ПОЛУЧЕНИЯ ЗАМЕЩЕННОГО 4-ГИДРОКСИБЕНЗАЛЬДЕГИДА 1996
  • Паскаль Метивье
  • Изабель Жув
  • Кристиан Маливерней
RU2164911C2

RU 2 495 157 C2

Авторы

Грисбах Ульрих

Фишер Андреас

Штекер Флориан

Ботцем Йорг

Пельцер Ральф

Эммелут Марио

Вальдфогель Зигфрид Р.

Даты

2013-10-10Публикация

2009-05-11Подача