СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА ТИТАНА Российский патент 2013 года по МПК C23C28/00 C25D11/26 

Описание патента на изобретение RU2495963C1

Изобретение относится к области нанотехнологии и наноэлектроники, а конкретно к получению пористых оксидных наноматериалов.

Известен способ получения пористого оксида титана путем анодного окисления титана [1]. Он заключается в том, что электрохимически в электролите на водной основе (0,5-3,5 вес.% HF в воде) на титановом образце выращивают слой пористого анодного оксида титана. Основным недостатком способа является то, что он не обеспечивает получение оксида титана с повышенной степенью упорядоченности его наноструктуры и воспроизводимости геометрических параметров пор. Кроме того, выращиваемые в водных растворах кислот пористые слои оксида имеют предельную толщину (не более 500 нм), хотя для практического применения часто необходимы пористые пленки оксида большей толщины.

Известен способ получения пористого анодного оксида титана [2]. Он заключается в том, что электрохимически в электролите на неводной основе (1 вес.% HF в диэтиленгликоле) на титановом образце выращивают слой пористого оксида титана. Оксид имеет пористую структуру, а его толщина составляет более 10 мкм, что значительно превышает предельную толщину оксида, получаемого в водных растворах. Однако как в первом, так и в данном случае не удается получить оксид с высокой степенью упорядоченности пор и воспроизводимости их геометрических параметров.

Наиболее близким к предлагаемому техническому решению является способ получения пористого анодного оксида титана [3]. Он заключается в том, что электрохимически в потенциостатическом режиме с использованием электролита на неводной основе (раствор NH4F в этиленгликоле) на титановой подложке выращивают слой пористого оксида титана. Как и в предыдущем способе обеспечивается возможность формирования оксида значительной толщины. Способ позволяет формировать оксид титана с квазиупорядоченной наноструктурой. Однако и в данном случае не удается получить оксид с повышенной степенью упорядоченности пор и воспроизводимости их геометрических параметров.

Задача изобретения - повышение воспроизводимости формирования пористого оксида титана с высокой степенью упорядоченности наноструктуры.

Сущность изобретения заключается в следующем.

Исходным является титановый образец. На титановом образце формируют слой пористого оксида титана. Слой оксида титана формируют анодным окислением титанового образца (электрохимически при анодной поляризации титанового образца) в потенциостатическом режиме (в режиме стабилизации напряжения) в электролите на неводной основе при термостабилизации зоны протекания электрохимической реакции. Электролит на неводной основе меняют на слабый водный раствор неорганической кислоты и проведением электрохимического процесса при катодной поляризации титанового образца в потенциостатическом режиме отделяют слой пористого анодного оксида. Меняют слабый водный раствор неорганической кислоты на электролит на неводной основе и анодным окислением титанового образца в потенциостатическом режиме при термостабилизации зоны протекания электрохимической реакции формируют вторичный слой пористого анодного оксида титана. В качестве него используют титановую фольгу или подложку с нанесенной на нее тонкой пленкой титана. В качестве материала подложки может быть использован монокристаллический кремний.

Предлагаемый способ основан на двухстадийном анодировании титанового образца. Формируемый на титановом образце слой пористого оксида титана является «жертвенным». При протекании электрохимического процесса в слабом водном растворе неорганической кислоты при катодной поляризации титанового образца (по сути, при противоположной в сравнении с анодированием полярности напряжения между анодом и катодом) в потенциостатическом режиме на границе раздела титан-оксид титана, происходит активное выделение водорода, приводящее к отделению (механическому отрыву) «жертвенного» слоя пористого оксида титана. Образующаяся наноструктурированная поверхность титана является ориентирующей для последующего эффективного выращивания вторичного слоя пористого оксида титана с повышенной степенью упорядоченности наноструктуры.

На фиг.1 приведена РЭМ-микрофотография нанорельефной поверхности титанового образца после удаления с него слоя пористого оксида титана.

На фиг.2 представлены РЭМ-микрофотографии поверхности слоя пористого оксида титана, полученного при одностадийном (а) и двустадийном (б) анодировании.

Анодное окисление титанового образца для формирования слоя и вторичного слоя пористого анодного оксида проводят при термостабилизации зоны протекания электрохимической реакции. Это необходимо для того, что бы исключить локальные разогревы титанового образца и, как следствие, локальные растравы образующихся пор. В целой это повышает воспроизводимость формирования массива пор с требуемыми геометрическими параметрами.

Пример исполнения.

Исходной является титановая фольга. Титановую фольгу помещают в электрохимическую ячейку, в которой находится электролит на неводной основе (0,3 М NH4F в этиленгликоле), и анодным окислением в потенциостатическом режиме при клеммном напряжении 90 В в течение 15 минут при термостабилизации зоны протекания электрохимической реакции при 20°С выращивают слой пористого оксида титана толщиной 4 мкм. Электролит удаляют из электрохимической ячейки, заливают в нее слабый водный раствор неорганической кислоты (5% водный раствор H2SO4) и проводят электрохимический процесс при катодной поляризации титанового образца в потенциостатическом режиме при клеммном напряжении 5 В в течение 1 минуты, при этом отделяют (удаляют) слой пористого анодного оксида титана. Меняют слабый водный раствор неорганической кислоты на электролит на неводной основе (0,3М NH4F в этиленгликоле) и анодным окислением титанового образца в потенциостатическом режиме при клеммном напряжении 90 В в течение 45 минут при термостабилизации зоны протекания электрохимической реакции при 20°С формируют вторичный слой пористого анодного оксида титана толщиной 12 мкм.

Положительный эффект от использования предлагаемого способа заключается в повышении воспроизводимости формирования пористого оксида титана с высокой степенью упорядоченности наноструктуры. В процессе проведения предложенного двухстадийного способа формирования пористого анодного оксида титана образующаяся наноструктурированная поверхность титана является ориентирующей для последующего эффективного выращивания вторичного слоя пористого оксида титана с повышенной степенью упорядоченности наноструктуры.

Практическая значимость предлагаемого способа заключается в возможности создания на основе титан-оксидных структур высокочувствительных датчиков различных газов, характеризующихся повышенной воспроизводимостью, тонкопленочных солнечных элементов нового поколения.

Источники информации

1. Gong D., Grimes С.А., Varghese O.K. Titanium oxide nanotube arrays prepared by anodic oxidation // Journal of Materials Research. 2001. - Vol.16, No. 12. - P.3331-3334.

2. Sorachon Yoriya and Craig A. Grimes Self-Assembled TiО2 Nanotube Arrays by Anodization of Titanium in Diethylene Glycol: Approach to Extended Pore Widening// Langmuir. 2010. - Vel.26. P.417-420.

3. Патент США №20100320089, кл. C23C 28/00 - прототип.

Похожие патенты RU2495963C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ НА ОСНОВЕ НАНОПОРИСТОГО ДИОКСИДА ТИТАНА 2016
  • Серпова Мария Александровна
  • Суворов Дмитрий Владимирович
  • Гололобов Геннадий Петрович
  • Стрючкова Юлия Михайловна
  • Тарабрин Дмитрий Юрьевич
RU2631780C1
СУПЕРКОНДЕНСАТОР НА ОСНОВЕ КМОП-ТЕХНОЛОГИИ 2016
  • Белов Алексей Николаевич
  • Гусев Евгений Эдуардович
  • Дюжев Николай Алексеевич
  • Золотарев Виталий Иосифович
  • Киреев Валерий Юрьевич
RU2629364C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА АЛЮМИНИЯ 2006
  • Белов Алексей Николаевич
  • Гаврилов Сергей Александрович
  • Железнякова Анастасия Вячеславовна
  • Тихомиров Алексей Александрович
  • Тузовский Всеволод Константинович
  • Шевяков Василий Иванович
RU2324015C1
ЭЛЕКТРОХИМИЧЕСКАЯ ЯЧЕЙКА ДЛЯ ПОЛУЧЕНИЯ ПОРИСТЫХ АНОДНЫХ ОКСИДОВ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ 2010
  • Белов Алексей Николаевич
  • Гаврилов Сергей Александрович
  • Шевяков Василий Иванович
RU2425182C1
СПОСОБ ПОЛУЧЕНИЯ АНОДНОГО ОКСИДА АЛЮМИНИЯ С ВЫСОКОУПОРЯДОЧЕННОЙ ПОРИСТОЙ СТРУКТУРОЙ И СПОСОБ ФОРМИРОВАНИЯ МАССИВОВ АНИЗОТРОПНЫХ НАНОСТРУКТУР НА ЕГО ОСНОВЕ 2010
  • Напольский Кирилл Сергеевич
  • Елисеев Андрей Анатольевич
  • Росляков Илья Владимирович
  • Лукашин Алексей Викторович
  • Третьяков Юрий Дмитриевич
RU2555366C2
ТЕСТОВАЯ СТРУКТУРА ДЛЯ ОЦЕНКИ РАДИУСА КРИВИЗНЫ ОСТРИЯ ИГЛЫ КАНТИЛЕВЕРА СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА 2012
  • Белов Алексей Николаевич
  • Гаврилов Сергей Александрович
  • Дронов Алексей Алексеевич
  • Шевяков Василий Иванович
RU2511025C1
СПОСОБ ПОЛУЧЕНИЯ МЕМБРАН НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ 2011
  • Кондриков Николай Борисович
  • Царёв Сергей Александрович
RU2474466C1
ПЕРФОРИРОВАННАЯ МЕМБРАНА И СПОСОБ ЕЁ ИЗГОТОВЛЕНИЯ 2002
  • Мамаев А.И.
  • Мамаева В.А.
RU2226425C2
СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНА 2012
  • Попова Ольга Васильевна
  • Марьева Екатерина Александровна
  • Клиндухов Валерий Григорьевич
  • Петров Виктор Владимирович
RU2516142C2
СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНА И ЕГО СПЛАВОВ 2012
  • Попова Ольга Васильевна
  • Марьева Екатерина Александровна
  • Клиндухов Валерий Григорьевич
  • Сербиновский Михаил Юрьевич
RU2496924C1

Иллюстрации к изобретению RU 2 495 963 C1

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА ТИТАНА

Изобретение относится к области гальванотехники и может быть использовано в области наноэлектроники. Способ включает формирование слоя пористого анодного оксида анодным окислением титанового образца в потенциостатическом режиме в электролите на неводной основе, при этом после формирования слоя пористого анодного оксида проводят электрохимический процесс его отделения в слабом водном растворе неорганической кислоты катодной поляризацией титанового образца в потенциостатическом режиме, затем анодным окислением титанового образца в потенциостатическом режиме в электролите на неводной основе формируют вторичный слой пористого анодного оксида титана, при этом анодное окисление титанового образца для формирования слоя и вторичного слоя пористого анодного оксида проводят при термостабилизации зоны протекания электрохимической реакции. Технический результат: повышение воспроизводимости формирования пористого оксида титана с высокой степенью упорядоченности наноструктуры. 2 з.п. ф-лы, 2 ил., 1 пр.

Формула изобретения RU 2 495 963 C1

1. Способ получения пористого анодного оксида титана, включающий формирование слоя пористого анодного оксида титана путем анодного окисления титанового образца в потенциостатическом режиме в электролите на неводной основе, отличающийся тем, что после формирования слоя пористого анодного оксида титана проводят электрохимический процесс его отделения в слабом водном растворе неорганической кислоты путем катодной поляризации титанового образца в потенциостатическом режиме, затем формируют вторичный слой пористого анодного оксида титана путем анодного окисления титанового образца в потенциостатическом режиме в электролите на неводной основе, при этом формирование слоев пористого анодного оксида титана проводят при термостабилизации зоны протекания электрохимической реакции.

2. Способ по п.1, отличающийся тем, что в качестве титанового образца используют титановую фольгу или подложку с нанесенной на нее тонкой пленкой титана.

3. Способ по п.2, отличающийся тем, что в качестве материала подложки используют монокристаллический кремний.

Документы, цитированные в отчете о поиске Патент 2013 года RU2495963C1

US 20100320089 A1, 23.12.2010
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО АНОДНОГО ОКСИДА АЛЮМИНИЯ 2006
  • Белов Алексей Николаевич
  • Гаврилов Сергей Александрович
  • Железнякова Анастасия Вячеславовна
  • Тихомиров Алексей Александрович
  • Тузовский Всеволод Константинович
  • Шевяков Василий Иванович
RU2324015C1
ЭЛЕКТРОХИМИЧЕСКАЯ ЯЧЕЙКА ДЛЯ ПОЛУЧЕНИЯ ПОРИСТЫХ АНОДНЫХ ОКСИДОВ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ 2006
  • Белов Алексей Николаевич
  • Гаврилов Сергей Александрович
  • Демидов Юрий Александрович
  • Железнякова Анастасия Вячеславовна
  • Шевяков Василий Иванович
RU2332528C1
Цифровой генератор гармонических сигналов 1988
  • Ванько Владимир Михайлович
  • Доронина Ольга Михайловна
  • Лавров Геннадий Николаевич
SU1614102A2

RU 2 495 963 C1

Авторы

Белов Алексей Николаевич

Гаврилов Сергей Александрович

Дронов Алексей Алексеевич

Пятилова Ольга Вениаминовна

Шевяков Василий Иванович

Даты

2013-10-20Публикация

2012-09-25Подача