КОАКСИАЛЬНЫЙ МАГНИТОПЛАЗМЕННЫЙ УСКОРИТЕЛЬ Российский патент 2013 года по МПК H05H1/54 

Описание патента на изобретение RU2498542C1

Изобретение относится к области электротехники и электрофизики, а именно к экспериментальной физике и ускорительной технике и может использоваться для ускорения плазмы до гиперскоростей, а также для получения смеси нанодисперсных порошков титана и меди, а также соединений: оксидов, нитридов и др. путем распыления материала гиперскоростной плазменной струи в свободном пространстве.

Известен коаксиальный магнитоплазменный ускоритель (RU 61856 U1, МПК F41B 6/00 (2006.01), опубл. 10.03.2007 г.), выполненный в виде коаксиально размещенного внутри соленоида цилиндрического электропроводящего ствола, внутри которого размещена плавкая перемычка, электрически соединяющая начало ствола и центральный электрод, который присоединен к одной клемме цепи питания ускорителя. Цепь питания второй клеммой присоединена к концу соленоида, удаленному от центрального электрода. Второй конец соленоида электрически соединен с началом ствола. Вершины центрального электрода, начало ствола и начало соленоида размещены в одной плоскости, перпендикулярной оси ствола. Корпус узла центрального электрода выполнен из магнитного материала и перекрывает зону размещения плавкой перемычки. Длина части перекрывающей зону размещения плавкой перемычки составляет 40-50 мм, а ее внешняя поверхность выполнена конусообразной.

С помощью этого ускорителя невозможно получить шихту сверхтвердых порошкообразных материалов на основе титана, в состав которой введен связующий пластичный компонент из меди.

Наиболее близким к заявленному ускорителю является коаксиальный магнитоплазменный ускоритель (RU 2442095 С1, МПК F41B 6/00 (2006.01), H05H 11/00 (2006.01), опубл. 10.02.2012 г.), выбранный в качестве прототипа, выполненный в виде коаксиально размещенного внутри соленоида цилиндрического электропроводящего титанового ствола. Внутри ствола размещена плавкая перемычка, электрически соединяющая начало ствола и центральный электрод, который присоединен к одной клемме цепи питания ускорителя. Цепь питания второй клеммой присоединена к концу соленоида, удаленного от центрального электрода. Второй конец соленоида электрически соединен с началом титанового ствола, а вершина центрального электрода, начало ствола и начало соленоида размещены в одной плоскости, перпендикулярной оси ствола. Корпус узла центрального электрода выполнен из магнитного материала и перекрывает зону размещения плавкой перемычки, длина части перекрывающей зону размещения плавкой перемычки составляет 40-50 мм, а ее внешняя поверхность выполнена конусообразной. Внутри цилиндрического титанового ствола в начальной его части размещена цилиндрическая медная вставка длиной не превышающей четверть длины титанового ствола, причем в конечной части медной вставки выполнены пропилы составляющие не более 85% ее длины.

Недостатком прототипа является непостоянный диаметр ускорительного канала по его длине, что негативно сказывается на динамике плазменного потока, из которого формируется шихта.

Задачей изобретения является получение шихты сверхтвердых порошкообразных материалов на основе титана, в состав которой введен связующий пластичный компонент из меди.

Поставленная задача достигается за счет того, что коаксиальный магнитоплазменный ускоритель выполнен так же, как в прототипе, в виде коаксиально размещенного внутри соленоида цилиндрического электропроводящего титанового ствола. Внутри ствола размещена плавкая перемычка, электрически соединяющая начало ствола и центральный электрод, который присоединен к одной клемме цепи питания ускорителя. Цепь питания второй клеммой присоединена к концу соленоида, удаленного от центрального электрода. Второй конец соленоида электрически соединен с началом титанового ствола, а вершина центрального электрода, начало ствола и начало соленоида размещены в одной плоскости, перпендикулярной оси ствола. Корпус узла центрального электрода выполнен из магнитного материала и перекрывает зону размещения плавкой перемычки, длина части перекрывающей зону размещения плавкой перемычки составляет 40-50 мм, а ее внешняя поверхность выполнена конусообразной. Внутри цилиндрического титанового ствола в начальной его части размещена цилиндрическая медная вставка.

Согласно изобретению медная вставка выполнена в виде продольно размещенных медных шин круглого сечения, длина которых равна длине титанового ствола, причем площадь поверхности медных шин составляет до 30% от площади поверхности титанового ствола.

За счет использования медных шин происходит электроэрозионная наработка меди, при распылении которой образуется нанодисперсный порошок меди.

Выбор площади поверхности медных шин и титанового ствола определен необходимым соотношением компонентов шихты. Известно, что соотношение связующего пластичного компонента должно до 10% от общего содержания шихты. Экспериментально установлено, что такое соотношение обеспечивается при условии, когда площадь поверхности медных шин составляет 30% от площади поверхности титанового ствола.

На фиг.1 изображен коаксиальный магнитоплазменный ускоритель.

Коаксиальный магнитоплазменный ускоритель состоит из цилиндрического электропроводящего титанового ствола 1, центрального электрода 2, соединяющей их плавкой перемычки 3, состоящей из металлических проволочек, расходящихся от центрального электрода 2 и огибающих торцевую часть изолятора 4 центрального электрода 2. Узел 5 центрального электрода 2, выполненный из магнитного материала (конструкционной стали), сопряжен со стволом 1, укрепляя узел центрального электрода2, и перекрывая зону размещения плавкой перемычки 3. Длина части, перекрывающей зону размещения плавкой перемычки 3, составляет 40-50 мм, а ее внешняя поверхность выполнена конусообразной. Соленоид 6 выполнен за одно целое с фланцем 7 и цилиндрической частью 8, в которой размещен узел 5 центрального электрода 2. Соленоид 6 укреплен резьбовой заглушкой 9. Соленоид 6 снаружи укреплен прочным стеклопластиковым корпусом 10 и стянут мощными токопроводящими шпильками 11 между фланцем 7 и стеклопластиковым упорным кольцом 12. Токопроводящие шпильки 11 электрически соединены токопроводящим кольцом 13, а к токопроводящим шпилькам 11 присоединен шинопровод 14 внешней схемы электропитания. Второй шинопровод 15 схемы электропитания присоединен к центральному электроду 2. К шинопроводу 15 последовательно присоединены ключ 16 и конденсаторная батарея 17, связанная с шинопроводом 14. Внутри цилиндрического титанового ствола 1 размещены четыре медные шины 18. Длина медных шин 18 равна длине титанового ствола 1.

Работа устройства заключается в следующем. При замыкании ключа 16 в контуре электропитания ускорителя начинает протекать ток от конденсаторной батареи 17, по шинопроводу 14, токопроводящему кольцу 13, шпилькам 11, фланцу 7, виткам соленоида 6, узлу 5, стволу 1, медным шинам 18, плавкой перемычке 3, центральному электроду 2, шинопроводу 15, через ключ 16 и к конденсатору 17. При достижении нарастающим током i(t) некоторого уровня плавкая перемычка 3 взрывается с образованием сильноточного дугового разряда. Начальная форма плазменной структуры задается конфигурацией и расположением проволочек плавкой перемычки 3, а также наличием цилиндрического канала в изоляторе 4 центрального электрода 2. Плазма сильноточного разряда сжимается магнитным полем собственного тока, магнитным полем соленоида и приобретает грибообразную форму. В устройстве конусообразная часть узла 5 центрального электрода перекрывает зону размещения плавкой перемычки 3 и формирования плазменной структуры, экранирует эту зону в течение некоторого времени и исключает вращение грибообразной плазменной перемычки, уменьшая эрозию ствола на его начальном участке.

Генерируемая ускорителем импульсная гиперзвуковая плазменная струя выходит в пространство, заполненное азотом, происходит распыление материала, наработанного электроэрозионным путем с внутренней поверхности титанового ствола 1 и с поверхности медных шин 18, и формирование нанодисперсных частиц сверхтвердого материала.

Предложенное устройство испытано в следующих условиях: емкость конденсаторной батареи 17 составляла 48 мФ, ее зарядное напряжение - 3,0 кВ, длина титанового ствола 1 равна 275 мм, внутренний диаметр ствола - 21 мм, площади поверхности ствола составляла 18134 кв. мм, медные шины 18 круглого сечения диаметром 1,6 мм, количество медных шин - 4 шт.Площадь поверхности медных шин 18 составляла 5526 кв. мм, т.е. 30% от площади поверхности титанового ствола 1. Давление азота - 1,0 атм. В результате такого эксперимента получена шихта нанодисперсного порошка нитрида титана с включением распределенных частиц меди. Рентгеноструктурный анализ показал, что шихта состоит из кристаллических фаз cTiN - 90% и Cu - 10%.

Похожие патенты RU2498542C1

название год авторы номер документа
КОАКСИАЛЬНЫЙ МАГНИТОПЛАЗМЕННЫЙ УСКОРИТЕЛЬ 2010
  • Сивков Александр Анатольевич
  • Герасимов Дмитрий Юрьевич
  • Евдокимов Андрей Анатольевич
RU2442095C1
КОАКСИАЛЬНЫЙ МАГНИТОПЛАЗМЕННЫЙ УСКОРИТЕЛЬ 2010
  • Сивков Александр Анатольевич
  • Герасимов Дмитрий Юрьевич
  • Евдокимов Андрей Анатольевич
RU2459394C1
КОАКСИАЛЬНЫЙ МАГНИТОПЛАЗМЕННЫЙ УСКОРИТЕЛЬ 2009
  • Герасимов Дмитрий Юрьевич
  • Сивков Александр Анатольевич
RU2406278C1
СПОСОБ СИНТЕЗА НАНОДИСПЕРСНОГО НИТРИДА ТИТАНА 2016
  • Герасимов Дмитрий Юрьевич
  • Сивков Александр Анатольевич
RU2655365C1
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ПОРОШКА, СОДЕРЖАЩЕГО КАРБИД КРЕМНИЯ 2023
  • Никитин Дмитрий Сергеевич
  • Шаненков Иван Игоревич
  • Табакаев Роман Борисович
  • Насырбаев Артур Ринатович
  • Шаненкова Юлия Леонидовна
  • Рыскулов Дастан Нурбекович
  • Циммерман Александр Игоревич
  • Сивков Александр Анатольевич
RU2822915C1
КОАКСИАЛЬНЫЙ МАГНИТОПЛАЗМЕННЫЙ УСКОРИТЕЛЬ 2010
  • Сивков Александр Анатольевич
  • Пак Александр Яковлевич
RU2431947C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКОГО ДИОКСИДА ТИТАНА СО СТРУКТУРОЙ АНАТАЗА 2021
  • Сивков Александр Анатольевич
  • Вымпина Юлия Николаевна
  • Никитин Дмитрий Сергеевич
  • Шаненков Иван Игоревич
  • Рахматуллин Ильяс Аминович
  • Насырбаев Артур Ринатович
  • Шаненкова Юлия Леонидовна
RU2759314C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКОГО ДИОКСИДА ТИТАНА СО СТРУКТУРОЙ АНАТАЗ 2020
  • Сивков Александр Анатольевич
  • Вымпина Юлия Николаевна
  • Никитин Дмитрий Сергеевич
  • Шаненков Иван Игоревич
  • Рахматуллин Ильяс Аминович
  • Насырбаев Артур Ринатович
  • Шаненкова Юлия Леонидовна
RU2749736C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО МЕТАЛЛОМАТРИЧНОГО КОМПОЗИТА ИЗ МЕДИ И КАРБИДА КРЕМНИЯ 2023
  • Никитин Дмитрий Сергеевич
  • Насырбаев Артур Ринатович
  • Шаненков Иван Игоревич
  • Вымпина Юлия Николаевна
  • Сивков Александр Анатольевич
RU2807261C1
СПОСОБ ДИНАМИЧЕСКОГО СИНТЕЗА УЛЬТРАДИСПЕРСНОГО КРИСТАЛЛИЧЕСКОГО КОВАЛЕНТНОГО НИТРИДА УГЛЕРОДА CN И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Сивков Александр Анатольевич
  • Пак Александр Яковлевич
  • Рахматуллин Ильяс Аминович
RU2475449C2

Реферат патента 2013 года КОАКСИАЛЬНЫЙ МАГНИТОПЛАЗМЕННЫЙ УСКОРИТЕЛЬ

Изобретение относится к плазменной технике и может быть использовано для ускорения плазмы до гиперскоростей и получения нанодисперсных порошков титана и меди. Коаксиальный магнитоплазменный ускоритель содержит соленоид, цилиндрический титановый ствол, цепь питания. Титановый ствол содержит плавкие перемычки, титановые проволочки, титановый центральный электрод, цилиндрическую медную вставку. Корпус узла центрального электрода выполнен из магнитного материала и перекрывает зону размещения плавкой перемычки на 40-50 мм. Медная вставка выполнена в виде продольно размещённых медных шин круглого сечения. Длина медных шин равна длине титанового ствола, а площадь поверхности составляет 30% от площади поверхности титанового ствола. Изобретение позволяет получить шихты сверхтвердых порошкообразных материалов на основе титана со связующим компонентом из меди. 1 ил.

Формула изобретения RU 2 498 542 C1

Коаксиальный магнитоплазменный ускоритель, выполненный в виде коаксиально размещенного внутри соленоида цилиндрического титанового ствола, внутри которого размещена плавкая перемычка из титановых проволочек, электрически соединяющая начало ствола и титановый центральный электрод, который присоединен к одной из клемм цепи питания ускорителя, цепь питания второй клеммой присоединена к концу соленоида, удаленного от центрального электрода, второй конец соленоида электрически соединен с началом ствола, корпус узла центрального электрода выполнен из магнитного материала и перекрывает зону размещения плавкой перемычки, длина части перекрывающей зону размещения плавкой перемычки составляет 40-50 мм, а ее внешняя поверхность выполнена конусообразной, внутри цилиндрического титанового ствола размещена цилиндрическая медная вставка, отличающийся тем, что медная вставка выполнена в виде продольно размещенных медных шин круглого сечения, длина которых равна длине титанового ствола, причем площадь поверхности медных шин составляет до 30% от площади поверхности титанового ствола.

Документы, цитированные в отчете о поиске Патент 2013 года RU2498542C1

КОАКСИАЛЬНЫЙ МАГНИТОПЛАЗМЕННЫЙ УСКОРИТЕЛЬ 2010
  • Сивков Александр Анатольевич
  • Герасимов Дмитрий Юрьевич
  • Евдокимов Андрей Анатольевич
RU2442095C1
КОАКСИАЛЬНЫЙ МАГНИТОПЛАЗМЕННЫЙ УСКОРИТЕЛЬ 2009
  • Герасимов Дмитрий Юрьевич
  • Сивков Александр Анатольевич
RU2406278C1
US 7077047 В2, 18.07.2006
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО ЛИЦЕВОГО КИРПИЧА 2020
  • Головко Александр Александрович
RU2739441C1

RU 2 498 542 C1

Авторы

Герасимов Дмитрий Юрьевич

Сивков Александр Анатольевич

Даты

2013-11-10Публикация

2012-07-27Подача