СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОЙ СТАЛИ Российский патент 2013 года по МПК C21D8/02 C21D1/02 B21B1/26 B21B45/02 

Описание патента на изобретение RU2499059C2

Изобретение относится к прокатному производству и может быть использовано для получения листовой стали на толстолистовых реверсивных станах.

Известен способ производства толстых стальных листов, включающий нагрев сляба до температуры аустенитизации 1200°С, черновую прокатку до промежуточной толщины 70 мм с температурой раската 900°С. Затем раскат охлаждают на воздухе до температуры ниже 800°С и осуществляют многопроходную чистовую прокатку раската в лист конечной толщины [1].

Недостатки известного способа состоят в том, что охлаждение раската на воздухе перед чистовой прокаткой снижает производительность процесса.

Известен также способ контролируемой прокатки толстых листов на реверсивном толстолистовом стане, включающий нагрев стальных слябов до температуры 1250°С, черновую прокатку в раскаты промежуточной толщины, охлаждение раскатов на рольганге перед чистовой клетью в режиме качания и чистовую прокатку до конечной толщины [2].

Недостатки известного способа состоят в том, что охлаждение раската на воздухе перед чистовой прокаткой снижает производительность процесса.

Наиболее близким аналогом к предлагаемому изобретению является способ производства толстолистовой низколегированной стали, включающий нагрев сляба до температуры не выше 1160°С, черновую прокатку в раскат промежуточной толщины, охлаждение раската на роликах при возвратно-поступательном перемещении (для исключения перегрева роликов) и последующую его многопроходную чистовую прокатку с регламентированной температурой начала и конца прокатки в лист конечной толщины [3].

Недостатки известного способа состоят в том, что охлаждение раската на воздухе перед чистовой прокаткой продолжительность которого достигает 5-9 мин, снижает производительность процесса.

Техническая задача, решаемая изобретением, состоит в повышении производительности процесса.

Для решения технической задачи в известном способе производства толстолистовой стали, включающем нагрев слябов, черновую прокатку в раскат промежуточной толщины, охлаждение раската и последующую его многопроходную чистовую прокатку с регламентированной температурой начала и конца прокатки в лист конечной толщины, согласно изобретению охлаждение раската осуществляют при его возвратно-поступательном перемещении по водоохлаждаемым роликам, внутреннюю полость бочки которых предварительно заполняют шариками из теплопроводящего материала.

В вариантах реализации способа амплитуду возвратно-поступательного перемещения устанавливают не менее длины окружности водоохлаждаемых роликов; охлаждение раската водоохлаждаемыми роликами ведут до температуры его поверхности, па 50-100°С ниже температуры начала чистовой прокатки, после чего раскат выдерживают на воздухе в течение 5-10 с; раскат охлаждают до температуры, равномерно возрастающей от его начала к концу по ходу прокатки на 20-50°С; концевые участки полости бочек заполняют шариками, диаметр которых устанавливают превышающим диаметр шариков в его средней части в 1,3-1,5 раза; внутреннюю полость бочки заполняют шариками, теплопроводность материала которых устанавливают возрастающей от краев бочки к ее середине.

Сущность изобретения состоит в следующем. Экспериментально установлено, что охлаждение раската при его возвратно-поступательном перемещении по водоохлаждаемым роликам, внутреннюю полость бочки которых заполняют шариками из теплопроводящего материала, позволяет повысить теплосъем с поверхности раската и в 2-3 раза сократить длительность охлаждения, за счет чего обеспечивается повышение производительности процесса. При амплитуде возвратно-поступательного перемещения раската не менее длины окружности водоохлаждаемых роликов достигается равномерный температурный режим их бочек, исключается их деформирование вследствие термического расширения, повышается равномерность теплосъема с раската.

Поскольку температурное поле раската в процессе охлаждения с помощью водоохлаждаемых роликов неравномерно по толщине, то выдерживание на воздухе в течение 5-10 с при достижении температуры поверхности на 50-100°С ниже температуры начала чистовой прокатки, обеспечивает одновременное снижение температуры более горячих участков по толщине раската и повышение температуры переохлажденной поверхности до температуры начала чистовой прокатки, определяемой исходя из получения заданных параметров микроструктуры и механических свойств готового листа.

Охлаждение раската до температуры, равномерно возрастающей от его начала к концу по ходу прокатки на 20-50°С, обеспечивает компенсацию температурного клина, возникающего при прокатке. Такое охлаждение возможно за счет дифференцированного изменения расхода и/пли температуры воды, пропускаемой через водоохлаждаемые ролики.

В процессе охлаждения раската на воздухе, как это предусмотрено в известном способе [3], краевые участки охлаждаются более интенсивно, что приводит к формированию неравномерной микроструктуры и свойств толстолистовой стали. При заполнении концевых участков полости бочек шариками, диаметр которых устанавливают превышающим диаметр шариков в его средней части в 1,3-1,5 раза, возрастает теплосъем средней част раската но сравнению с краевыми участками. Аналогичный эффект имеет место, если внутреннюю полость бочки заполняют шариками, теплопроводность материала которых устанавливают возрастающей от краев бочки к ее середине. В результате достигается выравнивание температурного поля по ширине раската и механических свойств готовых листов.

Экспериментально установлено, что при охлаждении раската водоохлаждаемыми роликами до температуры его поверхности, ниже температуры начала чистовой прокатки более, чем на 100°С или времени выдержки на воздухе менее 5 с, температура поверхностей раската в процессе прокатки ниже, чем технологически необходимая, что ведет к появлению надрывов на поверхности и формированию неравномерных свойств по толщине готового листа. При охлаждении раската водоохлаждаемыми роликами до температуры его поверхности, ниже температуры начала чистовой прокатки менее, чем 50°С или времени выдержки на воздухе более 10 с, после завершения охлаждения температура раската становится выше технологически необходимой для начала чистовой прокатки, что отрицательно сказывается на комплексе механических свойств готовых листов.

Также экспериментально установлено, что если концевые участки полости бочки заполнять шариками, диаметр которых установлен выше диаметра шариков в средней части менее, чем в 1,3 раза, то после завершения охлаждения температура прикромочных участков полосы ниже, чем в ее средней части. Это увеличивает нестабильность микроструктуры и свойств листов. Заполнение концевых участков шариками, диаметр которых выше диаметра шариков в средней части более чем в 1,5 раза, приведет к тому, что вследствие снижения теплосъема температура кромок к концу периода охлаждения будет выше, чем в средней части полосы, что приведет к искажению формы листа при прокатке и формированию неравномерных механических свойств по его ширине.

Примеры реализации способа

1. Внутренние полости водоохлаждаемых роликов диаметром D=400 мм с длиной бочки L=2700 мм и с осевым подводом и отводом охлаждающей воды заполняют шариками диаметром dц=40 мм, выполненными из меди марки МОк. Собранные ролики монтируют на охлаждающем рольганге.

Непрерывно литые слябы толщиной 250 мм из стали марки 09Г2С загружают в методическую печь и нагревают до температуры аустенитизации Та=1160°С. После выдержки для выравнивания температуры по сечению, сляб подают к черновой клети дуо толстолистового реверсивного стана 2800 и подвергают черновой прокатке за 5 проходов с разбивкой ширины в раскат толщиной 70 мм.

Полученный раскат передают на охлаждающий рольганг с водоохлаждаемыми роликами, внутренняя полость которых заполнена шариками, и производят его охлаждение до температуры начала чистовой прокатки tн=800°С. В процессе охлаждения производят возвратно-поступательное перемещение раската по водоохлаждаемым роликам с амплитудой перемещения А=1256 мм, что соответствует длине окружности водоохлаждаемых роликов S=π·D=3,14·400=1256 мм, т.е. A=S.

Охлаждающая вода, принудительно циркулирующая через ролики в зазорах между шариками, отбирает тепло как с поверхности их полостей, так и с поверхностей шариков, благодаря чему интенсифицируется процесс охлаждения раската. Возвратно-поступательное перемещение раската исключает локальный перегрев водоохлаждаемых роликов и их деформирование. По истечении времени охлаждения τо=3 мин температура раската снижается до средней величины tн=800°С, после чего раскат задают в чистовую реверсивную клеть кварто, где производят его контролируемую прокатку за 7 проходов в лист конечной толщины 24 мм.

Интенсификация охлаждения раската с помощью водоохлаждаемых роликов сокращает длительность простоев стана и увеличивает его производительность на 10-12%.

2. Те же операции, что и в примере 1, только возвратно-поступательное перемещение раската но водоохлаждаемым роликам производят с амплитудой перемещения A=1100 мм, т.е. A<S. Указанный режим приводит нарушению равномерности нагрева и к термическому деформированию водоохлаждаемых роликов, их искривлению, что нарушает контакт с охлаждаемой поверхностью раската. Это ведет к увеличению продолжительности охлаждения до τо=5 мин, снижению производительности процесса, перегрузке и разрушению роликов.

3. Те же технологические операции, что и в примере 1, только охлаждение раската ведут за время τо=3 мин до температуры на его нижней поверхности tп=725°С, что на Δt=75°С ниже, чем технологически обоснованная температура tн=800°C, после чего выдерживают па воздухе в течение времени τв=7,5 с для выравнивания температуры по толщине. Это обеспечивает повышение стабильности механических свойств толстолистовой стали.

Варианты реализации примера 3 и показатели их эффективности приведены в табл.1.

Таблица 1 Температурно-временные режимы производства листов и их свойства № п/п Δt, °C τв с σв, МПа δ5, % KCU-40, Дж/см2 1. 40 4 420-450 17-28 52-56 2. 50 5 477 34 65 3. 75 7,5 478 35 66 4. 100 10 478 33 65 5. 120 12 430-460 19-27 52-58

Из данных, приведенных в табл.1, следует, что использование предложенных режимов (варианты №2-4), помимо повышения производительности процесса по сравнению с известным способом [3], обеспечивает повышение стабильности механических свойств толстолистовой стали.

4. Те же технологические операции, что и в примере 1, только среднюю часть водоохлаждаемых роликов на длине 2600 мм заполняют шариками диаметром dц=40 мм, а оба концевых участка - шариками диаметром dк=56 мм, т.е. диаметр шариков концевых участков dк превышает диаметр dц шариков в его средней части в 1,4 раза. Благодаря увеличенной площади охлаждения в средней части водоохлаждаемых роликов достигается выравнивание к концу периода охлаждения продолжительностью τо=3 мин температуры в средней части и на боковых сторонах раската. Выравнивание температурного поля по ширине благоприятно сказывается па свойствах по ширине (на краях и в середине) толстолистовой стали (табл.2):

Таблица 2 Варианты реализации способа и механические свойства по ширине листов № п/п dк:dц σв, МПа край/середина δ5, % край/середина KCU-40, Дж/см2 край/середина 1. 1,2 470/460 28/32 57/62 2. 1,3 477/477 34/34 65/65 3. 1,4 478/477 34/34 66/66 4. 1,5 478/467 34/34 66/66 5. 1,6 455/467 35/30 53/62

Данные, приведенные в табл.2, свидетельствуют об оптимальности предложенного соотношения диаметров шариков (варианты №2-4).

5. Те же технологические операции, что и в примере 1, только полость бочки заполняют шариками из меди и латуней. Латунь представляет собой сплав меди с цинком, причем с уменьшением содержания меди в латуни ее теплопроводность снижается.

Водоохлаждаемый ролик устанавливают вертикально и загружают в его внутреннюю полость вначале слой шариков из латуни марки Л60, содержащей 60% меди но массе (материал с низкой теплопроводностью). Затем в ролик загружают слой шариков из латуни марки Л80, содержащей 80% меди по массе (материал с промежуточной теплопроводностью). В центральную часть бочки загружают слой роликов из меди марки М0к (материал с высокой теплопроводностью), затем снова слой из латуни марки Л80, и завершают заполнение бочки шариками из латуни марки Л60.

В результате теплопроводность материала, из которого изготовлены шарики, возрастает от краев бочки водоохлаждаемого ролика к ее середине. Собранные ролики монтируют на охлаждающем рольганге.

Благодаря возрастающей теплопроводности шариков от краев бочки к середине интенсифицируется теплоотвод от средней по ширине части раската и снижается теплоотвод от его боковых сторон и кромок. Этим обеспечивается выравнивание температурного поля по ширине раската перед чистовой прокаткой, что при сокращении длительности охлаждения до τо=3 мин улучшает механические свойства горячекатаной листовой стали и их стабильность.

Технико-экономические преимущества предложенного способа производства толстолистовой стали состоят в том, что охлаждение раската перед чистовой прокаткой водоохлаждаемыми роликами, внутренняя которых предварительно заполнена шариками из тсплопроводящего материала, позволяет в 2-3 раза сократить длительность охлаждения и повысить производительность технологического процесса. Помимо этого достигается выравнивание температурного ноля раската, что повышает уровень и стабильность механических свойств готовой толстолистовой стали.

В качестве базового объекта принят известный способ [3]. Использование предложенного способа обеспечит повышение рентабельности производства толстолистовой стали па реверсивном прокатном стане па 1 5-20%.

Источники информации

1. Заявка №59-61504 (Япония), МПК В21В 1/38; В21В 1/22, 1984 г.

2. Погоржельский В.И. Контролируемая прокатка непрерывнолитого металла. М., Металлургия, 1986 г., с.90-91.

3. Патент РФ №2225887, MПК C21D 8/02, С21D 9/46, 2004 г.

Похожие патенты RU2499059C2

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ ЛИСТОВОЙ СТАЛИ 2011
  • Салихов Зуфар Гарифуллинович
  • Трайно Александр Иванович
  • Шабалов Иван Павлович
  • Шафигин Закир Кириллович
RU2471875C1
СПОСОБ ОХЛАЖДЕНИЯ ДВИЖУЩЕЙСЯ СТАЛЬНОЙ ГОРЯЧЕКАТАНОЙ ПОЛОСЫ 2011
  • Салихов Зуфар Гарифуллинович
  • Трайно Александр Иванович
  • Бахтадзе Наталья Николаевна
  • Генкин Аркадий Львович
  • Романцев Борис Алексеевич
  • Казакбаев Ниязбек Мукамбетович
  • Газимов Руслан Тахирович
RU2480528C1
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ СТАЛЬНЫХ ПОЛОС 2012
  • Вольшонок Игорь Зиновьевич
  • Трайно Александр Иванович
  • Григорович Константин Всеволодович
  • Русаков Андрей Дмитриевич
  • Салихов Зуфар Гаррифулинович
RU2499638C1
СПОСОБ ОХЛАЖДЕНИЯ ЗАГОТОВОК НА МАШИНАХ НЕПРЕРЫВНОГО ЛИТЬЯ 2009
  • Салихов Зуфар Гарифуллинович
  • Ишметьев Евгений Николаевич
  • Газимов Руслан Тахирович
  • Глебов Александр Георгиевич
  • Романенко Василий Павлович
  • Салихов Кирилл Зуфарович
  • Питкин Александр Николаевич
  • Авдонин Вячеслав Юрьевич
RU2422242C2
КОМПЛЕКС ДЛЯ ОБРАБОТКИ И ОБЕЗВРЕЖИВАНИЯ ТЕХНОГЕННЫХ И КОММУНАЛЬНЫХ ОТХОДОВ НА БАЗЕ "ПЛАВКИ ВАНЮКОВА" 2021
  • Салихов Зуфар Гарифуллинович
RU2779238C2
СПОСОБ ГОРЯЧЕЙ ПРОКАТКИ ПОЛОСОВОЙ СТАЛИ 1999
  • Ханхалов В.А.
RU2165320C2
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОЙ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2002
  • Степанов А.А.
  • Северинец И.Ю.
  • Томин А.А.
  • Бурканов В.М.
  • Голованов А.В.
  • Подтелков В.В.
  • Казакбаев Н.М.
  • Рослякова Н.Е.
  • Трайно А.И.
  • Тяпаев О.В.
RU2225887C2
СПОСОБ УПРАВЛЕНИЯ ОХЛАЖДЕНИЕМ СЛИТКА В МАШИНЕ НЕПРЕРЫВНОГО ЛИТЬЯ 2014
  • Салихов Зуфар Гарифуллинович
  • Бахтадзе Наталья Николаевна
  • Газимов Руслан Тахирович
  • Трайно Александр Иванович
  • Генкин Аркадий Львович
  • Салихов Марат Зуфарович
  • Демин Александр Викторович
RU2569620C2
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ВЫСОКОПРОЧНЫХ НИЗКОЛЕГИРОВАННЫХ ЛИСТОВ 2010
  • Тахаутдинов Рафкат Спартакович
  • Бодяев Юрий Алексеевич
  • Денисов Сергей Владимирович
  • Стеканов Павел Александрович
RU2449843C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОЙ СТАЛИ 2010
  • Скорохватов Николай Борисович
  • Емельянов Александр Матвеевич
  • Сосин Сергей Владимирович
  • Махов Геннадий Александрович
  • Моторин Виталий Анатольевич
  • Клюквин Михаил Борисович
  • Трайно Александр Иванович
  • Бащенко Анатолий Павлович
RU2414516C1

Реферат патента 2013 года СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОЙ СТАЛИ

Изобретение относится к прокатному производству и может быть использовано для получения листовой стали на толстолистовых реверсивных станах. Для повышения производительности процесса способ включает нагрев слябов, черновую прокатку в раскат промежуточной толщины, охлаждение раската и последующую его многопроходную чистовую прокатку с регламентированной температурой начала и конца прокатки в лист конечной толщины, при этом охлаждение раската осуществляют путем возвратно-поступательного перемещения по водоохлаждаемым роликам, внутренняя полость бочки которых предварительно заполнена шариками из теплопроводящего материала. Амплитуду возвратно-поступательного перемещения раската устанавливают не менее длины окружности водоохлаждаемых роликов, охлаждение раската ведут до температуры его поверхности на 50-100°С ниже температуры начала чистовой прокатки и выдерживают на воздухе в течение 5-10 с. Раскат охлаждают до температуры, равномерно возрастающей от его начала к концу по ходу прокатки на 20-50°С. Диаметр шариков, которыми заполняют концевые участки полости бочек, устанавливают превышающим диаметр шариков, заполняющих ее среднюю часть, в 1,3-1,5, или теплопроводность материала шариков, которыми заполняют внутреннюю полость бочки, устанавливают возрастающей от краев бочки к ее середине. 5 з.п. ф-лы, 2 табл., 5 пр.

Формула изобретения RU 2 499 059 C2

1. Способ производства толстолистовой стали, включающий нагрев слябов, черновую прокатку в раскат промежуточной толщины, охлаждение раската и последующую его многопроходную чистовую прокатку с регламентированной температурой начала и конца прокатки в лист конечной толщины, отличающийся тем, что охлаждение раската осуществляют путем возвратно-поступательного перемещения по водоохлаждаемым роликам, внутренняя полость бочки которых предварительно заполнена шариками из теплопроводящего материала.

2. Способ по п.1, отличающийся тем, что амплитуду возвратно-поступательного перемещения раската устанавливают не менее длины окружности водоохлаждаемых роликов.

3. Способ по п.1, отличающийся тем, что охлаждение раската водоохлаждаемыми роликами ведут до температуры его поверхности на 50-100°С ниже температуры начала чистовой прокатки, после чего раскат выдерживают на воздухе в течение 5-10 с.

4. Способ по п.1, отличающийся тем, что раскат охлаждают до температуры, равномерно возрастающей от его начала к концу по ходу прокатки на 20-50°С.

5. Способ по п.1, отличающийся тем, что концевые участки полости бочек заполнены шариками, диаметр которых устанавливают превышающим диаметр шариков в его средней части в 1,3-1,5 раза.

6. Способ по п.1, отличающийся тем, что внутреннюю полость бочки заполняют шариками, теплопроводность материала которых устанавливают возрастающей от краев бочки к ее середине.

Документы, цитированные в отчете о поиске Патент 2013 года RU2499059C2

СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОЙ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2002
  • Степанов А.А.
  • Северинец И.Ю.
  • Томин А.А.
  • Бурканов В.М.
  • Голованов А.В.
  • Подтелков В.В.
  • Казакбаев Н.М.
  • Рослякова Н.Е.
  • Трайно А.И.
  • Тяпаев О.В.
RU2225887C2
0
SU155795A1
Устройство для охлаждения листов 1974
  • Жильбер Мордекхай Иуда Даан
  • Жан Шремпп
  • Стефан Жорж-Жан-Мари Вьаннай
SU578903A3
СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТОЧУВСТВИТЕЛЬНОГО ПОЛОСКОВОГО ЭЛЕМЕНТА НА ОСНОВЕ ТОНКОПЛЕНОЧНОГО КОМПОЗИТНОГО МАГНИТОРЕЗИСТИВНОГО МАТЕРИАЛА 1990
  • Равлик А.Г.
  • Рощенко С.Т.
  • Самофалов В.Н.
  • Шипкова И.Г.
  • Абрамзон Г.В.
  • Полякова Р.Н.
  • Яковлев Н.И.
RU1764423C

RU 2 499 059 C2

Авторы

Салихов Зуфар Гарифуллинович

Трайно Александр Иванович

Шафигин Закир Кириллович

Романенко Василий Павлович

Газимов Руслан Тагирович

Якушев Евгений Валерьевич

Даты

2013-11-20Публикация

2011-07-28Подача