Изобретение относится к области ракетной техники и предназначено для регулирования режима работы жидкостной ракетной двигательной установки (ЖРДУ).
Известен способ регулирования режима работы ЖРДУ, заключающийся в вытеснении топлива из бака газом наддува, измерении давления по тракту подачи топлива в двигатель и изменении проходного сечения регулирующего органа в зависимости от измеренного давления (см. А.И. Бабкин, С.В. Белов, Н.Б. Рутовский, Е.В. Соловьев. «Основы теории автоматического управления ракетными двигателями установками». М. «Машиностроение», 1986 г., стр.25).
В результате анализа известного способа необходимо отметить, что при его осуществлении не контролируется и не отслеживается величина кавитационного запаса давления, что не исключает снижение кавитационного запаса давления ниже допустимого и возникновения аварийной ситуации, связанной с возгоранием двигателя при кавитационном срыве насоса.
Для исключения указанного недостатка выбирают расчетное значение давления в баках ракеты таким, чтобы обеспечить наличие достаточного резерва по давлению кавитационного срыва на всех режимах эксплуатации двигателя. Однако это приводит к неоправданным дополнительным энергетическим затратам, связанным с увеличением прочности и веса баков, увеличением расхода газа наддува. Кроме того, наличие резерва давления в баках не исключает возникновения аварийной ситуации при различного рода неисправных состояниях системы питания и системы термостатирования, что приводит к потере работоспособности двигателя.
Известен способ регулирования режима работы ЖРДУ, заключающийся в вытеснении топлива из бака газом наддува, измерении давления по тракту подачи топлива в двигатель и изменении проходного сечения регулирующего органа, причем дополнительно определяют допустимые значения кавитационного запаса давления, измеряют давления и температуры компонентов топлива на входе и обороты вала турбонасосного агрегата (ТНА), определяют и фиксируют значение кавитационного запаса давления, сравнивают его с допустимой для данного режима величиной, и при снижении кавитационного запаса давления ниже допустимого, увеличивают проходное сечение органа, регулирующее расход газа наддува, вытесняющего компонент топлива в тракт подачи двигателя, а при дальнейшем снижении кавитационного запаса давления изменяют проходное сечение регулирующего органа двигателя до режима, обеспечивающего потребную величину кавитационного запаса давления (см. патент РФ №2180705, кл. F02K 9/56, 2002 г.).
В результате анализа данного способа необходимо отметить, что при его осуществлении определяют по измеренным параметрам величину кавитационного запаса давления, полученного при модельных проливках насоса, сравнивают ее с допустимым значением и при снижении кавитационного запаса давления ниже допустимой величины изменяют проходное сечение органа, регулирующего расход газа наддува, повышая давление в баке и обеспечивая потребный кавитационный запас двигательной установки.
Однако определение кавитационного запаса давления при реализации известного способа производится по срывной характеристике, полученной при модельных проливках насоса, комплектующего турбонасосный агрегат двигателя, с пересчетом на условия и режим работы двигательной установки при испытании или эксплуатации. Это обстоятельство приводит к существенным погрешностям определения действительного значения кавитационного запаса давления до значения (1…1.5)·105 Па, что может привести к потере работоспособности из-за кавитационного срыва насоса или неоправданного увеличения расхода газа наддува и дополнительным энергетическим потерям.
Известен способ регулирования режима работы жидкостной ракетной двигательной установки, заключающийся в изменении проходного сечения органа, регулирующего расход газа наддува в зависимости от значения кавитационного запаса давления насосов турбонасосного агрегата (патент РФ №2418188 C1 кл. F02K 9/56 2006 г.) - наиболее близкий аналог.
В результате анализа известного способа выявлено, что при его осуществлении количественная характеристика потребного изменения расхода газа наддува и необходимое изменение проходного сечения органа регулирующего наддув, не определены. Это обстоятельство приводит к снижению точности регулирования режима, не обеспечивает безаварийную работу двигательной установки и обуславливает повышенные энергетические затраты газа наддува.
Техническим результатом данного изобретения является повышение точности регулирования ЖРДУ за счет исключения возможности кавитационного срыва насоса и потери работоспособности двигательной установки, а также сокращение непроизводительных энергетических затрат газа за счет снижения величины давления в баках ракеты.
Указанный технический результат обеспечивается тем, что в способе регулирования режима работы жидкостной ракетной двигательной установки заключающемся в изменении проходного сечения органа, регулирующего расход газа наддува в зависимости от кавитационного запаса давления насосов турбонасосного агрегата и измерении параметров двигателя, новым является то, что определяют производные параметров по времени работы, а изменение проходного сечения органа, регулирующего расход газа наддува, устанавливают по величине производной изменения давления и температуры на входе в двигатель.
Заявленный способ может быть реализован посредством системы, представленной на схеме.
ЖРДУ 1 оснащена измерительным блоком 2, включающим датчики измерения основных параметров ЖРДУ. Блок 2 связан с входом вычислительного устройства 3, выходы которого сообщены с корректирующим устройством 4 и запоминающим устройством 5. Вычислительное, корректирующее и запоминающее устройства (3, 4, 5) являются блоками бортовой цифровой вычислительной машины (БЦВМ). Газовые баллоны 6 ЖРДУ соединены с входами регуляторов 7 и 8 наддува. Входы данных регуляторов также связаны с выходом блока 4. Выходы регуляторов 7 и 8 связаны соответственно с баком 9 окислителя и баком 10 горючего. Выходы баков 9 и 10 связаны с входами в насосы ТНА.
Заявленный способ осуществляют следующим образом.
После выхода ЖРДУ 1 на режим главной ступени тяги, посредством датчиков, установленных на ЖРДУ и связанных с помощью устройства сопряжения с измерительным блоком 2 БЦВМ, в течение 1-2 сек измеряют давление и температуру компонентов топлива на входе в насосы ТНА, обороты вала ТНА, давление на выходе из насосов ТНА.
Вычисляют в вычислительном устройстве 3 значения приведенного напора насосов окислителя (H0) и горючего (Hг) ТНА по зависимостям:
где P02, Pr2 - давление на выходе из насоса ТНА соответственно окислителя и горючего;
P01, Pг1 - давление на входе в насос ТНА, соответственно окислителя и горючего;
ρ0 (T01), ρг (Tг1) - плотность окислителя и горючего;
n - обороты вала ТНА;
(T01), (Tг1) - температура на входе в насосы ТНА соответственно окислителя и горючего.
Режим работы двигательной установки в течение 1-2 сек после выхода на режим главной ступени характеризуется повышенным давлением на входе в насосы ТНА из-за практически полной заправки баков и высоким гидростатическим давлением и ограниченной величиной температуры компонентов топлива. Это обстоятельство гарантирует повышенный кавитационный запас давления насосов ТНА и позволяет принять вычислительные значения приведенных напоров в качестве контрольных.
Полученные значения приведенных напоров ТНА, рассчитанные по зависимости (1), запоминают в запоминающем устройстве 5 и фиксируют в качестве контрольных
Далее в процессе всей работы ЖРДУ продолжают измерения параметров и определение по зависимости (1) значения приведенных напоров насосов ТНА
Величина командного воздействия на регуляторы расхода газа устанавливается следующим образом. При установлении факта снижения кавитационного запаса давления ниже допустимого корректирующее устройство 4 подает команду в вычислительное устройство 3, в котором производится вычисление производных изменения давления и температуры на входе в двигатель, которым с помощью математической модели внутрибаковых процессов определяется необходимый расход газа наддува и потребное для его осуществления воздействие на привод регулятора наддува баков горючего или окислителя (φ0 или φг).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РЕГУЛИРОВАНИЯ РЕЖИМА РАБОТЫ ЖИДКОСТНОЙ РАКЕТНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКИ | 2010 |
|
RU2418188C1 |
СПОСОБ РЕГУЛИРОВАНИЯ РЕЖИМА РАБОТЫ ЖИДКОСТНОЙ РАКЕТНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКИ | 2000 |
|
RU2180705C2 |
СПОСОБ РЕГУЛИРОВАНИЯ РЕЖИМА РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ | 1996 |
|
RU2149439C1 |
ЖИДКОСТНАЯ РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА | 1998 |
|
RU2148181C1 |
СПОСОБ РЕГУЛИРОВАНИЯ РЕЖИМА РАБОТЫ ЖИДКОСТНОЙ РАКЕТНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКИ | 2000 |
|
RU2180704C2 |
Жидкостная ракетная двигательная установка | 2020 |
|
RU2772670C1 |
СПОСОБ ВЫКЛЮЧЕНИЯ ДВИГАТЕЛЬНОЙ УСТАНОВКИ ПОСЛЕДНЕЙ СТУПЕНИ РАКЕТ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ | 2003 |
|
RU2265561C2 |
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ ЗАКРЫТОГО ЦИКЛА С ДОЖИГАНИЕМ ОКИСЛИТЕЛЬНОГО И ВОССТАНОВИТЕЛЬНОГО ГЕНЕРАТОРНЫХ ГАЗОВ БЕЗ ПОЛНОЙ ГАЗИФИКАЦИИ И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 2022 |
|
RU2801019C1 |
ЖИДКОСТНАЯ РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА | 2014 |
|
RU2563596C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 1999 |
|
RU2156721C1 |
Изобретение относится к области ракетной техники и предназначено для регулирования режима работы жидкостной ракетной двигательной установки. Способ регулирования режима работы жидкостной ракетной двигательной установки заключается в изменении проходного сечения органа, регулирующего расход газа наддува в зависимости от кавитационного запаса давления насосов турбонасосного агрегата, измерении параметров двигателя и определении их производных по времени. Изменение проходного сечения органа, регулирующего расход газа наддува, устанавливают по величине производной изменения давления и температуры на входе в двигатель. Изобретение обеспечивает повышение точности регулирования, а также сокращение непроизводительных энергетических затрат за счет снижения величины давления в баках ракеты. 1 ил.
Способ регулирования режима работы жидкостной ракетной двигательной установки, заключающийся в изменении проходного сечения органа, регулирующего расход газа наддува в зависимости от кавитационного запаса давления насосов турбонасосного агрегата, и измерении параметров двигателя, отличающийся тем, что определяют производные параметры по времени работы, а изменение проходного сечения органа, регулирующего расход газа наддува, устанавливают по величине производной изменения давления и температуры на входе в двигатель.
СПОСОБ РЕГУЛИРОВАНИЯ РЕЖИМА РАБОТЫ ЖИДКОСТНОЙ РАКЕТНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКИ | 2010 |
|
RU2418188C1 |
СПОСОБ РЕГУЛИРОВАНИЯ РЕЖИМА РАБОТЫ ЖИДКОСТНОЙ РАКЕТНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКИ | 2000 |
|
RU2180704C2 |
СПОСОБ РЕГУЛИРОВАНИЯ РЕЖИМА РАБОТЫ ЖИДКОСТНОЙ РАКЕТНОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКИ | 2000 |
|
RU2180705C2 |
ПОЛИУРЕТАНОВАЯ ПЕНА С НИЗКИМ СОДЕРЖАНИЕМ МОНОМЕРОВ | 2010 |
|
RU2524938C2 |
DE 4005607 C1, 25.07.1991 | |||
Автомат для контроля твердости поршней | 1949 |
|
SU91852A1 |
Авторы
Даты
2013-11-27—Публикация
2012-05-25—Подача