СПОСОБ СИНТЕЗА ЦИАНОВОДОРОДА НА ЦИКЛИЧЕСКИ ПЕРЕМЕЩАЮЩЕМСЯ В КАЧЕСТВЕ ТРАНСПОРТНОГО ПСЕВДООЖИЖЕННОГО СЛОЯ ТЕПЛОНОСИТЕЛЕ В ВИДЕ ЧАСТИЦ Российский патент 2013 года по МПК C01C3/02 B01J8/20 

Описание патента на изобретение RU2502670C2

Изобретение касается способа синтеза циановодорода на теплоносителе в виде частиц, играющем роль транспортного псевдоожиженного слоя и циклически перемещающемся.

Циановодород (HCN, синильную кислоту) промышленным способом обычно синтезируют из метана и аммиака в газовой фазе в соответствии с уравнением реакции

СН4+NH3→HCN+3Н2

Реакция сильно эндотермична (252 кДж/моль), поэтому требуется значительное поступление энергии, а по термодинамическим причинам - очень высокая температура, в основном выше 1000°С. Эту реакцию обычно осуществляют в непрерывном режиме.

В качестве промышленных процессов синтеза циановодорода утвердились в основном три способа.

В методе Андрусова химическое преобразование происходит на металлических платино-родиевых сетках при температуре ок. 1150°С. Подачу энергии в этом случае осуществляют посредством параллельного сжигания метана и аммиака с кислородом в том же месте. В качестве источника кислорода используют как воздух, так и обогащенный кислородом воздух - вплоть до чистого кислорода. В отношении технологии установок и процесса метод Андрусова прост, поэтому капиталовложения сравнительно низки. Однако, из-за одновременного протекания реакции сжигания для ввода энергии, выход HCN относительно NH3 получается относительно низким - ок. 64%. Кроме того, концентрация HCN оказывается в силу разбавления параллельно формирующимися газообразными продуктами сжигания очень низкой (7 об.-%), что повышает затраты при последующем отделении HCN. По этим же причинам требуются соответственно крупные трубопроводы для технологического газа.

При реализации метода ВМА ("Blausaure aus Methan und Ammoniak - синильная кислота из метана и аммиака") реакция протекает примерно при 1200°С в керамических трубах, выложенных изнутри катализатором, которые в целях энергоснабжения отапливают снаружи горячим газом. Способ ВМА устраняет недостатки метода Андрусова посредством непрямого подачи тепла в реакционный процесс и позволяет достичь выхода HCN относительно NH3, превышающего 80%, причем концентрация HCN в прошедшем реакцию синтез-газе превышает 20 об.-%. При достижении этих преимуществ, однако, возникают существенные проблемы, обусловленные сложностью установки и способа. Так, для производственной установки с обычной в технике производительностью, например, 30000 тонн HCN в год требуется ок. 6000 керамических труб, в каждую из которых поток приходится направлять по отдельности, а для замены эти трубы также необходимо отключать по одной. Трубы обычно состоят из Al2O3. В условиях высокой температуры и частичным превращением в AIN по мере эксплуатации эти трубы обладают лишь ограниченным запасом прочности, а срок службы каждой отдельной трубы может варьировать. Это значительно повышает сложность процесса, в результате чего инвестиционные и эксплуатационные расходы оказываются очень высоки, несмотря на благоприятные значения выхода HCN.

В методе, разработанном фирмой Shawinigan, реакцию проводят в псевдоожиженном слое кокса при температуре более 1200°С, причем термическую энергию подают в форме электроэнергии через электроды высокого напряжения. Хотя метод фирмы Shawinigan довольно элегантно реализован с технологической точки зрения, это способ с обогревом электроэнергией. На сегодняшний день выработка электроэнергии возможна только с КПД ок. 1/3 относительно доступной первичной энергии. Поэтому непрямое энергоснабжение этого процесса (вторичной энергией) несоразмерно дорого, так что этот процесс осуществляют только в отдельных регионах и только в очень небольших установках. Для применения в промышленном масштабе он неэкономичен ввиду очень высоких переменных расходов на изготовление и по энергетическим причинам.

Другие способы изготовления циановодорода с использованием вихревого (псевдоожиженного) слоя, описанные до сих пор, не дошли до промышленного применения, поскольку они либо отличаются очень высокой технической сложностью, либо потому что ввиду особенностей конструкции их постигла чисто техническая неудача в связи с проблемами, обусловленными тепловым расширением либо же требованиями к материалу при чрезвычайно высоких температурах, а прежде всего - потому что с экономической точки зрения решение задачи поступления энергии было недостаточно привлекательно.

Поэтому все известные способы характеризуются техническими или экономическими недостатками, которые необходимо преодолеть.

Неожиданно было обнаружено, что поставленную таким образом задачу можно решить посредством способа непрерывного синтеза циановодорода посредством реакции аммиака с углеводородами, причем реакционную газовую смесь доводят до температуры реакции непрямым нагревом посредством контакта с теплоносителем в виде частиц, при реализации которого обеспечивают циркуляцию теплоносителя в транспортном псевдоожиженном слое, причем в восходящем транспортном потоке происходит нагрев теплоносителя, а в нисходящем транспортном потоке обеспечивают контакт теплоносителя с реакционной газовой смесью.

Таким образом, предметом настоящего изобретения является способ непрерывно осуществляемого синтеза циановодорода посредством реакции аммиака с углеводородами, причем реакционную газовую смесь доводят до температуры реакции непрямым нагревом посредством контакта с теплоносителем в виде частиц, при реализации которого обеспечивают циркуляцию теплоносителя в транспортном псевдоожиженном слое, причем в восходящем транспортном потоке происходит нагрев теплоносителя, а в нисходящем транспортном потоке обеспечивают контакт теплоносителя с реакционной газовой смесью.

К решению задачи настоящего изобретения приводит мысль использовать преимущества высокого выхода и высокой концентрации HCN в потоке продукта метода ВМА, но в то же время избежать неудобного с точки зрения оборудования и процесса проведения реакционной газовой смеси по множеству стационарных керамических труб, обогреваемых извне. Основная идея изобретения состоит в том, чтобы вместо этого вводить теплоту косвенным образом, с помощью имеющего форму частиц теплоносителя в подвижном транспортном псевдоожиженном слое. При этом нагрев теплоносителя и передача тепла реакционной газовой смеси должны быть разделены во времени и пространстве, а теплоноситель при этом должен циркулировать по замкнутому контуру. Нагрев теплоносителя происходит в восходящем транспортном потоке, а контакт с реакционной газовой смесью и ее преобразование - в нисходящем транспортном потоке.

На фигуре 1 схематически представлены принцип способа согласно изобретению и соответствующая установка.

Два вертикально расположенных реактора в виде трубы (1,2) соединены друг с другом с образованием замкнутого контура. В трубчатом реакторе (1), "подъемнике" ("Riser"), в восходящем транспортном потоке происходят псевдоожижение и нагрев (3) представленного в виде частиц теплоносителя (4), располагающегося в нижней части или подаваемого туда, с помощью потока горячего газа (5), который направляют туда, либо же (что целесообразно) создают там посредством сжигания смеси горючих веществ (6, 7). Из верхней части трубчатого реактора (1) транспортный псевдоожиженный слой отводят и подают его на сепарацию, получая горячий теплоноситель в виде частиц (4') и поток газа, который выводят в виде выхлопного газа (8). Разделение газовой фазы и фазы частиц твердого вещества целесообразно проводить в циклоне (9). Горячие частицы теплоносителя (4') через дозирующее устройство (10) попадают в верхнюю часть (11) трубчатого реактора (2), "спуска" ("Downer"), куда вводят реакционную газовую смесь аммиака и углеводородов (12), которая благодаря непосредственному контакту с горячими частицами теплоносителя резко доходит до температуры реакции. Реакция с получением циановодорода осуществляется в нисходящем транспортном потоке в трубчатом реакторе (2), в транспортном псевдоожиженном слое, перемещающемся по принципу пробкообразного потока (plug-flow-Prinzip). В нижнем конце трубчатого реактора (2) транспортный псевдоожиженный слой отводят и снова подают на сепарацию, получая горячий теплоноситель в виде частиц (4") и поток газа, который выводят в виде газа-продукта (13). Разделение газовой фазы и фазы частиц твердого вещества здесь также целесообразно проводить в циклоне (14). Отделенные частицы теплоносителя (4") возвращают по трубопроводу (15) с дозирующим устройством (16) в нижнюю область трубчатого реактора (1). Отделенный от потока газа теплоноситель в виде частиц можно "промывать" противотоком промывочного газа, подаваемого в трубопровод (15) по подводящему патрубку (17), в целях отделения газа, задерживающегося между зернами.

Проектирование, конструирование и изготовление установок, пригодных для способа согласно изобретению, можно осуществлять способом, известным как таковой. Компоненты установки можно изготавливать из материалов, пригодных для высокотемпературных технологических процессов. Существенное преимущество состоит в том, что все компоненты установки для этого высокотемпературного процесса можно реализовывать в форме конструкционных групп, сложенных из огнеупорного кирпича.

В качестве теплоносителя в виде частиц применяют керамический материал. Предпочтительно, чтобы он в основном состоял в каждом случае из алюминия, нитрида алюминия или смеси оксида алюминия и нитрида алюминия.

Оксид алюминия и нитрид алюминия обладают свойствами катализатора для процесса ВМА, причем активность оксида алюминия выше, чем нитрида алюминия. При длительном контакте с синтез-газом из аммиака и углеводородов оксид алюминия частично и постепенно превращается в нитрид алюминия, в силу чего каталитическая активность падает, а выход HCN снижается.

Способ согласно изобретению свободен от этого недостатка. Это опять же обусловлено пространственным и временным разделением фазы нагрева и фазы реакции, поскольку фазой нагрева можно управлять так, чтобы образовавшийся нитрид алюминия окислялся, то есть, снова превращался в оксид алюминия.

Каталитические свойства теплоносителя в виде частиц можно выгодным образом повысить, для чего в него вводят добавки одного или нескольких элементов из группы, которую образуют платина, палладий, иридий, родий, медь и никель. Соответствующие катализаторы в виде частиц керамического материала сами по себе известны и идентичны или практически идентичны катализаторам, применяемым при нефтепереработке в процессах крекинга, реформинга и платформинга.

Поток горячего газа, используемый для псевдоожижения и нагрева теплоносителя в виде частиц в восходящем транспортном потоке ("подъемнике"), целесообразно создавать посредством сжигания смеси горючих веществ. Поток горячего газа можно создавать сжиганием водорода, метана, природного газа, высших углеводородов или смесей этих топлив с воздухом, смесью воздуха с кислородом или кислородом. Помимо внешнего топлива можно сжигать также остаточные газы этого процесса, которые в настоящем случае состоят в основном из водорода, либо же любые остаточные газы, получаемые в месте реализации этого химического процесса.

В случае применения высших углеводородов рекомендуется дополнительно применять водород, чтобы избежать отложений углерода. В целом, способ согласно изобретению, в противоположность обычному способу ВМА, весьма нечувствителен к отложениям углерода на теплоносителе в виде частиц - как в фазе нагрева, так и в фазе реакции, так что вместо максимально чистого метана можно использовать также газ худшего качества и другие, в частности, высшие углеводороды. Это обусловлено пространственным и временным разделением фазы нагрева и фазы реакции, поскольку фазой нагрева можно управлять так, чтобы возможные отложения углерода сгорали.

Массовым расходом, температурой и временем пребывания теплоносителя в виде частиц на этапе нагрева в восходящем транспортном потоке можно управлять. После этого осуществляют сепарацию потока горячего газа с частицами, это целесообразно делать с помощью циклона, из которого горячий газ отводят из процесса в целях возможного дальнейшего применения или как выхлоп.

В нисходящем транспортном потоке ("спуске") обеспечивают контакт горячего теплоносителя в виде частиц с реакционной газовой смесью, при этом происходит преобразование синтез-газа, состоящего из аммиака и углеводородов, в циановодород. Показано, что характерный для способа согласно изобретению скачкообразный нагрев газовой синтез-смеси обеспечивает максимальные показатели выхода. При осуществлении процесса согласно изобретению это обеспечивают посредством очень быстрого контакта синтез-газа с теплоносителем в виде частиц, перегретым заданным образом и псевдоожиженным, а затем теплоноситель с газом перемещаются в транспортном псевдоожиженном слое по принципу пробкообразного потока.

Преобразование реакционной газовой смеси аммиака, углеводородов и при необходимости водорода происходит при температурах 750-1200°С, предпочтительно при 800-900°С. После этого осуществляют сепарацию газообразного потока продукции и частиц, это целесообразно делать с помощью циклона, из которого газ продукта отводят из процесса в целях дальнейшей переработки и изоляции циановодорода. Для получения циановодорода прошедший преобразование синтез-газ разлагают и подвергают дальнейшей переработке обычным образом, как это делается при реализации обычных, известных методов.

После отделения газа продукта теплоноситель в виде частиц возвращают по замкнутому контуру в фазу нагрева. При этом целесообразно промывать теплоноситель в виде частиц, отделенный от потока газа продукта, промывочным газом в целях противоточного отделения части газа между зернами. Газ промывки может в каждом случае состоять в основном из водорода, метана или из частично возвращенного газа, отведенного из потока горячего газа.

В сравнении с известными способами синтеза циановодорода способ согласно изобретению обладает многочисленными и отчасти неожиданными преимуществами. Так, выход продукта по использованному аммиаку как минимум соответствует уровню такового в обычном процессе ВМА и даже существенно его превышает, а концентрация HCN в газе продукта оказывается значительно выше. С точки зрения технологии установок и процесса настоящий способ существенно проще и, соответственно, дешевле, чем обычный способ ВМА. Пример реализации способа согласно изобретению в размерах пилотной установки описан ниже.

Экспериментальные примеры

Пилотная установка, сооруженная для экспериментальных примеров согласно фигуре 1, характеризуется следующими размерами:

Трубчатый реактор 1 - "подъемник" (Riser):

Внутренний диаметр: 80 мм

Длина: 6700 мм

Трубчатый реактор 2 - "спуск" (Downer):

Внутренний диаметр: 50 мм

Длина: 2000 мм

Сепараторная емкость циклона 9:

Внутренний диаметр: 600 мм

Высота: 900 мм

Сепараторная емкость циклона 14:

Внутренний диаметр: 266 мм

Высота: 625 мм.

Конструкция состояла из внешней металлической оболочки с полной внутренней облицовкой оксидом алюминия, причем промежуточный слой состоял из волокнистого керамического материала для компенсации напряжений, вызванных температурными нагрузками. Чтобы по возможности избежать теплопотерь, снаружи установку окружили слоем теплоизоляции из кварцевой стекловаты толщиной 400 мм, в середине которого дополнительно разместили поддерживающие электрические нагревательные элементы с нагревом на уровне 500°С. Чтобы обеспечить практически полное отделение частиц, после циклонов 9 и 14 разместили еще по одному циклону.

Управление или регулировку всех потоков, на которые можно влиять извне, осуществляли с помощью системы управления процессом.

Отдельные потоки реакционной смеси №12 задавали или устанавливали в каждом случае как твердые величины.

Количество топлива регулируют так, чтобы температура отводимого газа 8, как и идентичная ей температура горячего теплоносителя 4', достигла желательной величины.

Дозирующее устройство 10 отрегулировали так, чтобы в газообразном продукте 13 была достигнута желательная температура, а дозирующее устройство 16 - так, чтобы поддерживать постоянный уровень заполнения бака сепаратора циклона 14.

Пример 1:

В качестве теплоносителя/катализатора в виде частиц использовали оксид алюминия (торговое наименование Puralox SCCa 150-200, производство фирмы Sasol Germany) со средним размером зерна d50 в 150 микрометров.

С использованием вышеприведенной тактики регулировки в стационарном состоянии имели место следующие потоки:

№12 Компонент реакционного газа 1 - аммиак, 1,55 кг/ч

№12 Компонент реакционного газа 2 - метан, 1,46 кг/ч

№6 Компонент топливной смеси 1 - водород, 1,20 кг/ч

№7 Компонент топливной смеси 2 - воздух, 43,26 кг/ч

Количество циркулирующего теплоносителя - 170,44 кг/ч (рассчитано косвенно). Температура в отводимом газе 8 в итоге составляла 1030°С, а в газе продукта - 13-880°С.

После эксплуатации на протяжении 9 часов в газообразном продукте получили следующий стационарный результат реакции:

Состав по итогам газовой хроматографии:

HCN 23,5 об.-%,

водород 72,7 об.-%

азот 1,3 об.-%,

метан 2,5 об.-%,

аммиак 0 об.-%.

Количество HCN, собравшееся в подключенном промывателе с раствором NaOH по балансу массы за 2 часа, составило 2,238 кг/ч. Это соответствует выходу в 90,9% относительно использованного количества аммиака.

Пример 2:

Эксперимент из примера 1 повторили с тем исключением, что использованный теплоноситель/катализатор в виде частиц был покрыт платиной (с помощью раствора гексахлороплатината и последующего восстановления водородом при 500°С на протяжении 5 ч). Платиновое покрытие составляло 1,49 мас.-%.

После эксплуатации на протяжении 7 часов в газообразном продукте получили следующий стационарный результат реакции:

Состав по итогам газовой хроматографии:

HCN 23,8 об.-%.

водород 72,8 об.-%

азот 1,1 об.-%.

метан 2,3 об.-%.

аммиак 0 об.-%.

Количество HCN, собравшееся в подключенном промывателе с раствором NaOH по балансу массы за 2 часа, составило 2,267 кг/ч. Это соответствует выходу в 92,1% относительно использованного количества аммиака.

Пояснение условных обозначений

Номер Обозначение 1 Трубчатый реактор 1 2 Трубчатый реактор 2 3 Зона нагрева в трубчатом реакторе 1 4 Теплоноситель 4' Горячий теплоноситель в виде частиц 4" Горячий теплоноситель в виде частиц

5 Поток горячего газа 6 Компонент топливной смеси 1 7 Компонент топливной смеси 2 8 Отводимый газ (выхлоп) 9 Циклон 10 Дозирующее устройство 11 Верхняя часть 12 Реакционная смесь из аммиака и углеводородов 13 Газообразный продукт 14 Циклон 15 Трубопровод 16 Дозирующее устройство 17 Подводящий трубопровод

Похожие патенты RU2502670C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ЦИАНИДА ЩЕЛОЧНОГО МЕТАЛЛА И ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ ГРАНУЛЯТ ЦИАНИДА ЩЕЛОЧНОГО МЕТАЛЛА 1998
  • Шютте Рюдигер
  • Альт Ханс Кристиан
  • Беккер-Бальфанц Катрин
  • Зауэр Манфред
  • Хиппель Лукас Фон
  • Фоер Оливер
  • Лореш Йюрген
RU2201895C2
ТРАНСПОРТНАЯ ТЕХНОЛОГИЧЕСКАЯ УСТАНОВКА ЧАСТИЧНОГО ОКИСЛЕНИЯ И СПОСОБ НИЗКОТЕМПЕРАТУРНОЙ КОНВЕРСИИ НИЗКОЦЕННЫХ УГЛЕВОДОРОДНЫХ ПОТОКОВ 1995
  • Эусебиус Анку Гбордзоэ
  • Гуннар Бэггер Хеннингсен
  • Дэррил Уэйн Хертз
RU2160699C2
УЛУЧШЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ СИНИЛЬНОЙ КИСЛОТЫ ПОСРЕДСТВОМ КАТАЛИТИЧЕСКОЙ ДЕГИДРАТАЦИИ ГАЗООБРАЗНОГО ФОРМАМИДА 2008
  • Белинг Ральф
  • Декерс Андреас
  • Шнайдер Томас
  • Аххаммер Гюнтер
  • Луйкен Херманн
  • Пфаб Петер
RU2498940C2
ЧАСТИЧНОЕ ОКИСЛЕНИЕ МЕТАНА И ВЫСШИХ УГЛЕВОДОРОДОВ В ПОТОКАХ СИНТЕЗ-ГАЗА 2012
  • Бул Лоренс
  • Чакраварти Шрикар
  • Ло Стефан Еф
  • Дрневич Рэймонд Ф.
  • Бонаквист Данте П.
  • Томпсон Дэвид Р.
RU2600373C2
СПОСОБ КАТАЛИТИЧЕСКОГО ЧАСТИЧНОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДНОГО СЫРЬЯ, СПОСОБ ПОЛУЧЕНИЯ МОНООКИСИ УГЛЕРОДА И ВОДОРОДА ИЗ УГЛЕВОДОРОДНОГО СЫРЬЯ, МОНООКИСЬ УГЛЕРОДА И ВОДОРОД 1994
  • Крейн Питер Де Йонг
  • Рональд Ян Схонебек
  • Курт Александр Вонкеман
RU2132299C1
СПОСОБ ПОЛУЧЕНИЯ ДЕГИДРИРОВАННЫХ УГЛЕВОДОРОДНЫХ СОЕДИНЕНИЙ 2005
  • Претц Мэттью Т.
  • Домке Сузан Б.
  • Кастор Вилльям М.
  • Хэмпер Саймон Дж.
RU2379276C2
СПОСОБ ПОЛУЧЕНИЯ ДЕГИДРИРОВАННЫХ УГЛЕВОДОРОДНЫХ СОЕДИНЕНИЙ 2005
  • Претц Мэттью Т.
  • Домке Сузан Б.
  • Кастор Вилльям М.
  • Хэмпер Саймон Дж.
RU2508282C2
РЕАКТОР С ИНДУКЦИОННЫМ НАГРЕВОМ ДЛЯ ГАЗОФАЗНЫХ КАТАЛИТИЧЕСКИХ РЕАКЦИЙ 2003
  • Блэквэлл Бенни Э.
  • Фэллон Синтия К.
  • Керби Грегори С.
  • Мехдизадех Мехрдад
  • Перейра Кармо Дж.
  • Сенгупта Соурав К.
  • Коч Теодор А.
RU2339576C2
УЛУЧШЕННЫЙ СПОСОБ СОВМЕСТНОГО ПОЛУЧЕНИЯ АКРИЛОНИТРИЛА И ЦИАНОВОДОРОДА 2009
  • Басхам Брент И.
  • Стимек Ричард Т.
RU2494092C2
СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА 2013
  • Герзелиев Ильяс Магомедович
  • Попов Александр Юрьевич
  • Усачев Николай Яковлевич
  • Хаджиев Саламбек Наибович
RU2556941C2

Иллюстрации к изобретению RU 2 502 670 C2

Реферат патента 2013 года СПОСОБ СИНТЕЗА ЦИАНОВОДОРОДА НА ЦИКЛИЧЕСКИ ПЕРЕМЕЩАЮЩЕМСЯ В КАЧЕСТВЕ ТРАНСПОРТНОГО ПСЕВДООЖИЖЕННОГО СЛОЯ ТЕПЛОНОСИТЕЛЕ В ВИДЕ ЧАСТИЦ

Изобретение может быть использовано в химической промышленности. Для осуществления непрерывного синтеза циановодорода посредством реакции аммиака с углеводородами, реакционную газовую смесь доводят до температуры реакции непрямым нагревом посредством контакта с теплоносителем в виде частиц в псевдоожиженном слое. При этом обеспечивают циркуляцию теплоносителя в транспортном псевдоожиженном слое. В восходящем транспортном потоке происходит нагрев теплоносителя, а в нисходящем транспортном потоке обеспечивают контакт теплоносителя с реакционной газовой смесью. Изобретение позволяет повысить выход продукта при упрощении процесса. 9 з.п. ф-лы, 1 ил., 2 пр.

Формула изобретения RU 2 502 670 C2

1. Способ непрерывно осуществляемого синтеза циановодорода посредством реакции аммиака с углеводородами, причем реакционную газовую смесь доводят до температуры реакции непрямым нагревом посредством контакта с теплоносителем в виде частиц в псевдоожиженном слое, отличающийся тем, что обеспечивают циркуляцию теплоносителя в транспортном псевдоожиженном слое, причем в восходящем транспортном потоке происходит нагрев теплоносителя, а в нисходящем транспортном потоке обеспечивают контакт теплоносителя с реакционной газовой смесью.

2. Способ по п.1, отличающийся тем, что взаимодействие реакционной газовой смеси аммиака, углеводородов и при необходимости водорода происходит при температуре 750-1200°C, предпочтительно при 800-900°C.

3. Способ по п.1, отличающийся тем, что для псевдоожижения и нагрева теплоносителя в виде частиц в восходящем транспортном потоке используют поток горячего газа, созданного посредством сжигания смеси горючих веществ.

4. Способ по п.3, отличающийся тем, что поток горячего газа создают сжиганием водорода, метана, природного газа, высших углеводородов или смесей этих топлив с воздухом, смесью воздуха с кислородом или кислородом.

5. Способ по п.1, отличающийся тем, что за восходящим и нисходящим транспортными потоками транспортного псевдоожиженного слоя в каждом случае следует этап сепарации теплоносителя в виде частиц и потока газа.

6. Способ по п.5, отличающийся тем, что разделение теплоносителя в виде частиц и потока газа в каждом случае осуществляют с помощью циклонов.

7. Способ по п.6, отличающийся тем, что отделенный от потока газа теплоноситель в виде частиц промывают противотоком промывочного газа в целях отделения газа, задерживающегося между зернами.

8. Способ по п.7, отличающийся тем, что промывочный газ в каждом случае состоит в основном из водорода, метана или газа, отводимого из потока горячего газа.

9. Способ по одному из пп.1-8, отличающийся тем, что теплоноситель в виде частиц в основном состоит в каждом случае из оксида алюминия, нитрида алюминия или смеси оксида алюминия и нитрида алюминия.

10. Способ по п.9, отличающийся тем, что в теплоноситель в виде частиц введены добавки одного или нескольких элементов из группы, которую образуют платина, палладий, иридий, родий, медь и никель.

Документы, цитированные в отчете о поиске Патент 2013 года RU2502670C2

US 3370918 А, 27.02.1968
RU 96115404 А, 27.10.1998
Способ получения цианистого водорода 1980
  • Карль Фойгт
  • Петер Клейншмит
  • Эберхард Вальтер
SU952099A3
ГИДРОПРИВОД ПИТАТЕЛЯ СТРОИТЕЛЬНО-ДОРОЖНОЙ 0
SU397614A1
СПОСОБ ПОЛУЧЕНИЯ 2,5-ДИМЕРКАПТО-1,3,4-ТИАДИАЗОЛА (ДМТД) 2020
  • Орлянский Василий Михайлович
  • Орлянский Михаил Витальевич
RU2743164C1

RU 2 502 670 C2

Авторы

Зигерт Херманн

Даты

2013-12-27Публикация

2009-06-05Подача