СПОСОБ ОЧИСТКИ ВОДЫ Российский патент 2013 года по МПК C02F1/72 B01D61/00 

Описание патента на изобретение RU2502682C1

Изобретение относится к способам очистки воды от растворенных органических веществ и может быть использовано для очистки природных и сточных вод.

Известен способ для очистки сточных вод (патент RU 2359919 от 27.06.2009), в котором имеется, по меньшей мере, один реакционный сосуд, по меньшей мере, с одним выпуском очищенных сточных вод, по меньшей мере, с одним вентиляционным каналом и со средством введения, по меньшей мере, одного окисляющего газа. Реакционный сосуд содержит слой материала, способного катализировать реакцию окисления органического материала в указанных сточных водах и/или поглощать этот органический материал. Реакционный сосуд также содержит погружную мембрану устройства фильтрации, при этом средство введения по меньшей мере одного окисляющего газа и впуск сточных вод расположены на дне реакционного сосуда для введения окисляющего газа и сточных вод параллельными потоками, в направлении слоя каталитического материала, и затем в направлении мембраны устройства фильтрации. Однако в данном способе при параллельном движении газа и обрабатываемых сточных вод не происходит полного смешения сточных вод и окисляющего газа, что приводит к недостаточной степени очистки воды.

Известен способ жидкофазного мембранного разделения (патент RU 2232044 от 03.02.2003), где происходит полное смешение обрабатываемой воды и газа при использовании мембранной сепарации. Техническое решение этого способа заключается в жидкофазном разделении путем предварительного насыщения под рабочим давлением фильтрования обрабатываемого раствора инертными, по отношению к разделяемым компонентам и к материалам мембранного аппарата, газами с последующей фильтрацией раствора через ультрафильтрационную мембрану. Однако в этом способе используются инертные к компонентам жидкости и материалу мембран газы, поэтому он не может быть использован для проведения окислительных каталитических процессов.

Наиболее близким к заявляемому техническому решению по технической сущности и достигаемому техническому результату является способ очистки воды от растворенных органических веществ, включающий приведение раствора в контакт с полупроводниковым фотокатализатором, облучение их ультрафиолетом в течение времени, достаточного для разрушения примесей, и отделение очищенной воды от фотокатализатора мембранной фильтрацией, отличающийся тем, что все три стадии осуществляются одновременно путем фильтрации через пористую мембрану из полупроводникового материала на основе TiO2, CdS, SrTiO3, Fe2O3, являющуюся фотокатализатором, при одновременном облучении мембраны ультрафиолетом в присутствии избытка окислительного агента (Патент РФ №2117517 опубл. 20.08.1998 г.). Введение кислорода или озона осуществляется через газопроницаемую водонепроницаемую мембрану.

Однако данный способ является трудоемким, так как требует:

- наличия мощных источников ультрафиолетового облучения,

- сложных высоконапорных генераторов кислорода и/или озона,

- дополнительных водонепроницаемых мембран для подвода газа, что, в свою очередь, ведет к усложнению и удорожанию процесса очистки воды.

Кроме этого, данный способ

- имеет ограничения по максимальной исходной концентрации загрязняющих органических веществ в обрабатываемой воде,

- требует наличия избытка окислителей для предотвращения отравления катализатора мембран и/или снижения их каталитической активности.

Задачами изобретения являются:

- упрощение процесса каталитического окисления в мембранном реакторе;

- снятие ограничения по концентрациям загрязняющих веществ и по количеству окислителей в исходной реакционной смеси;

- повышение надежности очистки загрязненных вод.

Поставленные задачи решаются тем, что в способе очистки воды, включающем каталитическое окисление компонентов водного раствора в мембранном реакторе в присутствии окислителей в виде газов, согласно изобретению, обрабатываемый раствор полностью насыщают вводимыми газами - окислителями перед мембранным реактором под рабочим давлением трансмембранного фильтрования, причем в мембранный реактор подают, как растворенные гомогенные катализаторы или дисперсии гетерогенных катализаторов, так и их смеси.

Схема процесса представлена на фигуре. Способ осуществляется следующим образом.

Сырьевая емкость 1 заполняется очищаемой от загрязняемых примесей водой. Туда же может добавляться растворенный гомогенный или диспергированный гетерогенный катализатор. Затем жидкость из сырьевой емкости 1 по трубопроводу 2 эжектором 3 подается под рабочим давлением трансмембранного фильтрования в сатуратор 4. С помощью эжектора 3 в сатуратор 4 поступают окислители в виде газов, например, кислород или его смесь с озоном. Из сатуратора 4 после полного насыщения обрабатываемой жидкости окисляющим газом газонасыщенная реакционная смесь поступает в реактор с каталитически активными мембранами 5. При этом у поверхности мембраны со стороны сырья образуется слой с повышенной концентрацией реагирующих между собой и задерживаемых мембраной веществ (концентрационная поляризация), который, тем самым ускоряет их химическое взаимодействие. Продукты реакции отводятся из зоны реакции через мембрану, что также способствует увеличению скорости и степени химического взаимодействия. Слой с повышенной концентрацией задерживаемых мембраной веществ создает определенное гидравлическое сопротивление для трансмембранного потока. В нем происходит уменьшение гидростатического давления, вследствие чего из предварительно насыщенной газом жидкости начинают выделяться пузырьки растворенного газа, которые за счет тангенциального движения уменьшают вероятность загрязнения поверхности мембраны различными отложениями и промежуточными продуктами окисления, поддерживая тем самым ее каталитическую активность. Кроме того, окислитель, находящийся в газовой фазе в более высоких концентрациях, чем в жидкости, способствует лучшей активации катализатора на поверхности мембраны и препятствует его отравлению.

Катализаторы и непрореагировавшие вещества, находящиеся в обрабатываемой жидкости по линии ретентата 6, могут быть возвращены в сырьевую емкость для последующей повторной обработки в каталитическом мембранном реакторе.

Пример 1. Исследовалась очистка воды со следующим составом: ХПК (химическое потребление кислорода - бихроматная окисляемость) - 1930 мг/дм3, БПКп (полное биохимическое потребление кислорода) - 793 мг/дм3, взвешенные вещества - 3 мг/дм3, окислитель - озоно-кислородная смесь - 20 мгО3/дм3. Вода подавалась в мембранный реактор с каталитически активными мембранами, минуя сатуратор. Давление в мембранном реакторе составляло 0,6 МПа. В процессе исследований изменялось количество подаваемой через эжектор озоно-кислородной смеси и, тем самым, варьировались дозы подаваемого озона. Эффективность окисления сточных вод оценивалась по ХПК. Результаты исследований приведены в таблице 1.

Таблица 1 Доза подаваемого озона, мг/дм3 ХПК после обработки, мг/дм3 1100 1220 1900 859 2800 430 2900 442 3000 435

Пример 2. Исследовалась очистка воды со следующим составом: ХПК - 1930 мг/дм3, БПКп - 793 мг/дм3, взвешенные вещества - 3 мг/дм3, окислитель - озоно-кислородная смесь - 20 мгO3/дм3. Вода подавалась в мембранный реактор с каталитически активными мембранами через сатуратор. Давление в сатураторе и в мембранном реакторе составляло 0,6 МПа. В процессе исследований изменялось время пребывания газожидкостной смеси в сатураторе и, тем самым, варьировалась степень насыщения исходной жидкости озоном. Эффективность окисления сточных вод оценивалась по ХПК. Результаты исследований приведены в таблице 2. При 100% степени насыщения обрабатываемой жидкости газом наблюдается резкое снижение ХПК сточных вод после мембранного реактора.

Пример 3. Исследовалась очистка воды со следующим составом: ХПК - 1930 мг/дм3, БПКп - 793 мг/дм3, взвешенные вещества - 3 мг/дм3. В воду добавлялся катализатор - раствор MnCl2, окислитель - озоно-кислородная смесь - 20 мгO3/дм3. Смесь воды и катализатора подавалась в мембранный реактор с каталитически активными мембранами через сатуратор. Давление в сатураторе и в мембранном реакторе составляло 0,6 МПа. В процессе исследований изменялось время пребывания газожидкостной смеси в сатураторе и, тем самым, варьировалась степень насыщения исходной жидкости озоном. Эффективность окисления сточных вод оценивалась по ХПК. Результаты исследований приведены в таблице 2. При 100% степени насыщения обрабатываемой жидкости газом наблюдается резкое снижение ХПК сточных вод после мембранного реактора.

Пример 4. Исследовалась очистка воды со следующим составом: ХПК - 1930 мг/дм3, БПКп - 793 мг/дм3, взвешенные вещества - 3 мг/дм3. В воду добавлялся катализатор - дисперсия цеолита. Окислитель - озоно-кислородная смесь - 20 мгO3/дм3. Смесь воды и катализатора подавалась в мембранный реактор с каталитически активными мембранами через сатуратор. Давление в сатураторе и в мембранном реакторе составляло 0,6 МПа. В процессе исследований изменялось время пребывания газожидкостной смеси в сатураторе и, тем самым, варьировалась степень насыщения исходной жидкости озоном. Эффективность окисления сточных вод оценивалась по ХПК. Результаты исследований приведены в таблице 2. При 100% степени насыщения обрабатываемой жидкости газом наблюдается резкое снижение ХПК сточных вод после мембранного реактора.

Пример 5. Исследовалась очистка воды со следующим составом: ХПК - 1930 мг/дм3, БПКп - 793 мг/дм3, взвешенные вещества - 3 мг/дм3. В воду добавлялись катализаторы - дисперсия цеолита и раствор MnCl2. Окислитель - озоно-кислородная смесь - 20 мгO3/дм3. Вода подавалась в мембранный реактор с каталитически активными мембранами через сатуратор. Давление в сатураторе и в мембранном реакторе составляло 0,6 МПа. В процессе исследований изменялось время пребывания газожидкостной смеси в сатураторе и, тем самым, варьировалась степень насыщения исходной жидкости озоном. Эффективность окисления сточных вод оценивалась по ХПК. Результаты исследований приведены в таблице 2. При 100% степени насыщения обрабатываемой жидкости газом наблюдается резкое снижение ХПК сточных вод после мембранного реактора.

Таблица 2 Условия проведения процесса обработки сточных вод ХПК сточных вод, мг/дм3, после сатуратора (числитель) и после реактора с каталитически активными мембранами (знаменатель) при степени насыщения газом-окислителем обрабатываемой жидкости, % 20 40 60 80 100 без добавления катализатора в исходную жидкость (пример 2) 1810 1730 1640 1540 1470 1320 1300 1130 1130 240 с добавлением в исходную жидкость гомогенного катализатора (пример 3) 1730 1670 1525 1420 1320 1160 1120 890 910 186 с добавлением в исходную жидкость гетерогенного катализатора (пример 4) 1790 1690 1600 1460 1430 1210 1240 970 1050 203 с добавлением в исходную жидкость смеси гомогенного и гетерогенного 1710 1650 1500 1360 1280 1090 1070 820 850 175 катализаторов (пример 5)

Предлагаемый способ очистки воды найдет свое применение при очистке природных и сточных вод.

Похожие патенты RU2502682C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Хангильдин Рустэм Ильдусович
  • Ибрагимов Ильдус Гамирович
  • Баландина Анна Геннадиевна
  • Мартяшева Валентина Анатольевна
  • Аминова Альфия Фатыховна
  • Шарафутдинова Гульнара Минигаяновна
  • Хангильдина Адиля Рустэмовна
RU2597387C1
УСТАНОВКА ДЛЯ ОЧИСТКИ ВОДЫ КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ 2014
  • Хангильдин Рустэм Ильдусович
  • Баландина Анна Геннадиевна
  • Шундеева Елена Викторовна
  • Мартяшева Валентина Анатольевна
  • Фаттахова Альфия Мухарямовна
  • Хангильдина Адиля Рустэмовна
RU2572132C2
СПОСОБ БИОЛОГИЧЕСКОЙ ОЧИСТКИ ВОДЫ 2003
  • Хангильдин Р.И.
  • Шарафутдинова Г.М.
  • Мартяшова В.А.
  • Абдрахимов Ю.Р.
  • Зверев Г.Н.
RU2253627C2
СПОСОБ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ СТОЧНЫХ ВОД 2020
  • Шевченко Андрей Станиславович
  • Переведенцев Сергей Владимирович
  • Локтионов Олег Георгиевич
RU2720613C1
Способ деминерализации водных растворов 1991
  • Гребенюк Владимир Дмитриевич
  • Стрижак Нина Петровна
  • Гончарук Владислав Владимирович
  • Самсони-Тодоров Александр Олегович
  • Гречко Анатолий Викторович
SU1810306A1
УСТАНОВКА И СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД 2004
  • Дэн Катрин
  • Шротте Жан-Кристоф
  • Пэйар Эрве
RU2359919C2
ГЕТЕРОГЕННЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ НЕОРГАНИЧЕСКИХ И/ИЛИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НА КЕРАМИЧЕСКОМ НОСИТЕЛЕ 2003
  • Кочеткова Раиса Прохоровна
  • Кочетков Алексей Юрьевич
  • Коваленко Наталья Александровна
RU2295386C2
ГЕТЕРОГЕННЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ НЕОРГАНИЧЕСКИХ И/ИЛИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НА ПОЛИМЕРНОМ НОСИТЕЛЕ 2003
  • Кочеткова Р.П.
  • Кочетков А.Ю.
  • Коваленко Н.А.
RU2255805C2
СПОСОБ ОЧИСТКИ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Аристова Н.А.
  • Беркутов Н.А.
  • Корчаков С.А.
  • Пискарев И.М.
RU2251533C2
СПОСОБ ОКИСЛЕНИЯ СЕРНИСТЫХ И ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В РАСТВОРАХ (ВАРИАНТЫ) 2002
  • Кочеткова Р.П.
  • Кочетков А.Ю.
  • Коваленко Н.А.
RU2224724C1

Иллюстрации к изобретению RU 2 502 682 C1

Реферат патента 2013 года СПОСОБ ОЧИСТКИ ВОДЫ

Изобретение относится к способам очистки воды от растворенных органических веществ и может быть использовано для очистки природных и сточных вод. Способ включает каталитическое окисление компонентов водного раствора в мембранном реакторе в присутствии растворенных газов-окислителей. Причем обрабатываемый раствор перед мембранным реактором предварительно выдерживают в сатураторе под рабочим давлением трансмембранного фильтрования до полного газонасыщения раствора. В качестве катализаторов могут быть использованы каталитически активные мембраны, растворенные гомогенные катализаторы и/или дисперсии гетерогенных катализаторов. Результат заключается в упрощении и повышении надежности каталитического окисления в мембранных реакторах, например, при очистке загрязненных вод. 3 з.п. ф-лы, 1 ил., 2 табл., 5 пр.

Формула изобретения RU 2 502 682 C1

1. Способ очистки воды, включающий каталитическое окисление компонентов водного раствора в мембранном реакторе в присутствии растворенных газов-окислителей, отличающийся тем, что обрабатываемый раствор перед мембранным реактором предварительно выдерживают в сатураторе под рабочим давлением трансмембранного фильтрования до полного газонасыщения раствора.

2. Способ по п.1, отличающийся тем, что в мембранный реактор подают растворенные гомогенные катализаторы.

3. Способ по п.1, отличающийся тем, что в мембранный реактор подают дисперсии гетерогенных катализаторов.

4. Способ по п.1, отличающийся тем, что в мембранный реактор подают смеси гомогенных и гетерогенных катализаторов.

Документы, цитированные в отчете о поиске Патент 2013 года RU2502682C1

Карбюратор для двигателей внутреннего горения 1926
  • Ф. Вухерер
SU6411A1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКАЧЕСТВЕННОЙ ПИТЬЕВОЙ ВОДЫ 2006
  • Исаев Николай Дмитриевич
RU2309902C2
Сварной якорь с одной поворотной лапой 1949
  • Шедлинг Ф.М.
SU79096A1
СПОСОБ ОЧИСТКИ ВОДЫ ОТ РАСТВОРЕННЫХ ОРГАНИЧЕСКИХ ВЕЩЕСТВ 1996
  • Махмутов Ф.А.
  • Мишкин Р.Н.
  • Царева Е.И.
RU2117517C1
СПОСОБ ПОЛУЧЕНИЯ СВЕРХЧИСТОЙ ПИТЬЕВОЙ ВОДЫ И УСТАНОВКА ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА 1996
  • Гринман Л.В.
  • Домнинский О.А.
  • Панченко Р.К.
  • Смирнов А.Д.
  • Флоровский К.Л.
  • Чернов В.Е.
RU2114790C1
US 5433866 A1, 18.07.1995.

RU 2 502 682 C1

Авторы

Хангильдин Рустэм Ильдусович

Фаттахова Альфия Мухарямовна

Шарафутдинова Гульнара Минигаяновна

Кирсанова Анна Геннадьевна

Мартяшова Валентина Анатольевна

Абдрахимов Юнир Рахимович

Хангильдина Адиля Рустэмовна

Даты

2013-12-27Публикация

2012-05-10Подача