Область техники
Настоящее изобретение относится к способу извлечения металлического галлия из летучей золы и, в частности, относится к способу извлечения металлического галлия из летучей золы, образующейся в циркулирующем кипящем слое.
Уровень техники
Галлий представляет собой важный и широко используемый полупроводниковый материал. Стоимость галлия на международном рынке очень высока и соответственно, галлий имеет блестящую перспективу. Однако запасы галлия ограничены, его содержание в земной коре составляет только приблизительно 0,015%. Галлий почти не образует минералы, но существует с другими минералами в форме изоморфизма. Поэтому извлечение галлия значительно затруднено. В природе галлий часто находят в минералах вместе с алюминием и цинком. По существу, сульфидные отложения цинковых и бокситных руд служат основным источником для извлечения галлия. В настоящее время, более чем 90% галлия в мире извлекают из побочного продукта глиноземного производства, в котором боксит используют как основной сырьевой материал. В качестве маточного раствора, применяемого для обогащения и отделения галлия, используют маточный раствор, полученный при осаждении углерода (или осаждении с применением затравки) в процессе производства глинозема. Главный компонент такой маточного раствора, полученного при осаждении углерода (или осаждении с применением затравки), представляет собой основной раствор метаалюмината натрия, содержащий галлий. Основные способы извлечения галлия из указанного основного раствора включают способ удаления алюминия с применением известкового теста и карбонизации, способ двухстадийного разложения карбонизированного известкового молока, способ осаждения и способ адсорбции на смоле, развивающийся в последние годы.
Недавние исследования показали, что летучая зола, полученная из некоторых мест, содержит большое количество галлия, которое даже превосходит уровень галлия в минеральном отложении. При исследованиях было подтверждено, что содержание галлия в летучей золе обычно составляет 12-230 мкг/г. По сравнению с содержанием галлия в других источниках, летучая зола вполне заслуживает того, чтобы ее использовали в качестве сырьевого материала для извлечения металлического галлия. С учетом различных условий прокаливания, летучую золу классифицируют как золу, образующуюся в пылеугольных котлах, и золу, образующуюся в циркулирующем кипящем слое. Летучую золу, образующуюся в пылеугольных котлах, получают угля при очень высоких температурах (1400-1600°С), при которых глинозем находится в стеклообразном состоянии или присутствует в виде минеральной формы кристаллов муллита или кристаллов корунда в горячем алюминиевом минерале, что делает такой глинозем очень стабильным. При этом температура горения летучей золы, образующейся в циркулирующем кипящем слое, гораздо ниже, чем температура традиционной летучей золы, образующейся при традиционном сжигании в пылеугольных котлах, и составляет только примерно 850°С. Разные температуры обуславливают значительное различие фазового состава летучей золой, образующейся в пылеугольных котлах, и летучей золой, образующейся в циркулирующем кипящем слое, то есть, аморфный каолинит входит в основной фазовый состав летучей золы, образующейся в циркулирующем кипящем слое, в которой диоксид кремния, глинозем и оксид железа обладают отличной активностью.
В CN 200810051209.5 описан способ извлечения, как глинозема, так и галлия из летучей золы. В указанном способе, раствор метаалюмината натрия, содержащий галлий, получают способами кислотного выщелачивания и щелочного выщелачивания, а затем обогащают и отделяют галлий в многостадийном процессе осаждения углерода и растворения гидроксида натрия.
В CN 200710065366.7 описан способ извлечения диоксида кремния, глинозема и оксида галлия из летучей золы с высоким содержанием глинозема. Способ включает стадии обработки остатков, полученных после извлечения диоксида кремния из летучей золы, с получением раствора метаалюмината натрия, содержащего галлий, применения такого раствора в качестве маточного раствора для обогащения галлия в многостадийном процессе осаждения углерода и растворения гидроксида натрия и в процессе адсорбции на смоле.
В CN 200710145132.3 описан способ получения галлия и глинозема. Способ включает стадии обработки летучей золы с получением раствора метаалюмината натрия, содержащего галлий, обогащения галлия в системе растворения Байера и затем отделения обогащенного галлия с помощью процесса адсорбции с применением хелатообразующей смолы.
В CN 200710141488.Х описан способ получения галлия. Промежуточный продукт, т.е. маточный раствор, полученный при осаждении углерода в процессе производства глинозема из летучей золы, применяют в качестве сырьевого материала и подвергают взаимодействию с бикарбонатом натрия, а затем полной карбонизации для получения концентрата галлия.
В приведенных выше документах, маточный раствор, полученный при осаждении углерода (или осаждении с применением затравки) в процессе производства глинозема из летучей золы, применяют в качестве сырьевого материала для обогащения и отделения галлия, то есть, маточный раствор, применяемый для извлечения галлия, представляет собой основной раствор метаалюмината натрия, содержащий галлий.
В CN 200810017872.3 описан процесс извлечения галлия из летучей золы и угольной пустой породы. В указанном процессе, использован адсорбционный метод с применением абсорбционных колонок для извлечения галлия из раствора хлорида алюминия, содержащего галлий, получаемого путем смешивания летучей золы и карбоната натрия, прокаливания указанной смеси с последующим водным выщелачиванием и осаждением углерода, и затем взаимодействия с соляной кислотой. Такой способ, при котором летучую золу и карбонат натрия смешивают и прокаливают перед кислотным выщелачиванием при очень высокой температуре, подходит для извлечения галлия из образующейся в пылеугольных котлах летучей золы, обладающей слабой активностью.
Jiazhen Не с соавторами сообщил об “исследовании метода повторного использования галлия из летучей золы” (Scientific Research, 2002, No.5, р23-26), в котором летучая зола реагирует непосредственно с соляной кислотой с получением раствора хлорида алюминия, содержащего галлий, без прокаливания при очень высокой температуре и с последующим извлечением галлия путем адсорбции на смоле. Температура реакции летучей золы и соляной кислоты низкая (60°С), что обуславливает очень низкую эффективность выщелачивания галлия (35,2%). Кроме того, смола, применяемая в указанном способе для извлечения, представляет собой левекстрел (levextrel) смолу (CL-TBP). Механизм адсорбции такой смолы аналогичен механизму извлечения растворителем. Указанную смолу получают путем полимеризации и отверждения активной группы экстракционного агента с основной смолой. В результате, эффективность адсорбции смолы очень низка, а себестоимость очень высока.
Краткое описание изобретения
Задача настоящего изобретения состоит в обеспечении улучшенного способа извлечения металлического галлия из летучей золы, образующейся в циркулирующем кипящем слое.
Способ извлечения металлического галлия из летучей золы, образующейся в циркулирующем кипящем слое, согласно настоящему изобретению включает следующие стадии:
a) измельчение летучей золы до размера 100 меш или менее, удаление железа путем мокрой магнитной сепарации, так что содержание оксидов железа в летучей золе уменьшается до 1,0 масс. % или менее, затем добавление соляной кислоты в обезжелезенную летучую золу для реакции кислотного выщелачивания, и разделение продукта реакции на жидкую и твердую фазу с получением продукта солянокислого выщелачивания, имеющего рН от 1 до 3;
b) адсорбирование галлия, содержащегося в продукте солянокислого выщелачивания, путем пропускания его через колонку, заполненную макропористой катионной смолой; и при достижении насыщения адсорбции, элюирование колонки водой или соляной кислотой в качестве элюирующего агента с получением галлийсодержащего элюента;
c) маскировка ионов трехвалентного железа в галлийсодержащем элюенте с помощью маскирующего агента с последующим пропусканием замаскированного элюента через колонку, заполненную макропористой катионной смолой; и при достижении насыщения адсорбции, элюирование колонки водой или соляной кислотой в качестве элюирующего агента с получением второго элюента; и
d) добавление щелочного раствора во второй элюент, удаление осадка путем фильтрования после завершения реакции и концентрирование фильтрата до тех пор, пока и содержание галлия, и содержание гидроксида натрия не составит 1 моль/л или более, затем проведение электролиза концентрированного фильтрата с получением металлического галлия.
Способ согласно настоящему изобретению будет подробно описан ниже, но настоящее изобретение не ограничено указанным описанием.
На стадии а) согласно одному из вариантов реализации настоящего изобретения, летучая зола включает, но не ограничивается ей, летучую золу, образующуюся в циркулирующем кипящем слое. С учетом распределения частиц летучей золы по размеру, летучую золу измельчают до размера 100 меш или менее, удаляя железо, содержащееся в измельченной летучей золе, перед кислотным выщелачиванием, так что содержание железа в летучей золе уменьшается до 1,0 масс. % или менее. Способы удаления железа могут представлять собой любые общепринятые способы обезжелезивания, такие как магнитную сепарацию. В настоящем изобретении предпочтительно применяют мокрую сепарацию в магнитном поле. В настоящем изобретении для мокрой магнитной сепарации можно использовать любой общепринятый магнитный сепаратор, подходящий для удаления железа из порошкообразного материала, при условии, что содержание железа в летучей золе может быть понижено до 1,0 масс. % Содержание железа в летучей золе рассчитывают на основе массы сухой летучей золы, не содержащей воды.
Магнитный сепаратор, применяемый для летучей золы, предпочтительно представляет собой вертикальный кольцевой магнитный сепаратор. Еще более предпочтительно, вертикальный кольцевой магнитный сепаратор содержит вращающееся кольцо, индуктивный средства, верхнее железное ярмо, нижнее железное ярмо, магнитную катушку возбуждения, загрузочное отверстие, хвостовой поддон и промывочное устройство для промывки водой, при этом загрузочное отверстие применяют для подачи угольной золы, подлежащей обезжелезиванию, хвостовой поддон применяют для выгрузки немагнитных частиц после обезжелезивания, верхнее железное ярмо и нижнее железное ярмо расположены, соответственно, на внутренней и внешней сторонах нижней части вращающегося кольца, промывочное устройство для промывки водой расположено над вращающимся кольцом, индуктивные средства расположены во вращающемся кольце, магнитная катушка возбуждения расположена на периферии верхнего железного ярма и нижнего железного ярма таким образом, что указанные верхнее ярмо и нижнее ярмо образуют пару магнитных полюсов для генерирования магнитного поля в вертикальном направлении, и индуктивные средства представляют собой слои сетки, сделанных из листовой стали, при этом каждая сетка из листовой стали образована переплетениемпроволоки, края которой имеют призматические острые углы.
Верхнее железное ярмо и нижнее железное ярмо предпочтительно выполнены за одно целое и расположены в плоскости, перпендикулярной к вращающемуся кольцу, таким образом, с охватом внутренней и внешнейстороны нижней части вращающегося кольца.
Вертикальный кольцевой магнитный сепаратор предпочтительно дополнительно содержит водяную рубашку с камерами для выравнивания давления, расположенную вблизи магнитной катушки возбуждения.
Сетка из листовой стали предпочтительно выполнена из 1Cr17.
Магнитная катушка возбуждения предпочтительно представляет собой соленоид из плоской алюминиевой проволоки с двойной стеклянной оболочкой.
Среднее расстояние между слоями сетки из листовой стали предпочтительно составляет от 2 до 5 мм. Более предпочтительно, среднее расстояние между слоями сетки из листовой стали составляет 3 мм.
Толщина сетки из листовой стали предпочтительно составляет от 0,8 до 1,5 мм, размер отверстий сетки составляет от 3 мм × 8 мм до 8 мм × 15 мм, а толщина проволоки составляет от 1 до 2 мм. Более предпочтительно, если толщина сетки листовой стали составляет 1 мм, размер отверстий сетки составляет 5 мм × 10 мм, а толщина проволоки составляет 1,6 мм.
Вертикальный кольцевой магнитный сепаратор предпочтительно дополнительно содержит пульсирующий механизм, связанноый с хвостовым поддоном посредством резиновой пластины.
Индуктивные средства предпочтительно размещены по всей окружности вращающегося кольца.
При применении вышеуказанного вертикального кольцевого магнитного сепаратора для магнитного разделения с целью обезжелезивания, необходимо регулярно определять содержание железа в суспензии, подвергаемой магнитному разделению. При содержании железа в суспензии равном или ниже заданного значения, происходит выгрузка суспензия; при содержании железа в суспензии выше заданного значения, суспензию возвращают в загрузочное отверстие для дополнительного магнитного разделения. Такое магнитное разделение можно повторить от 2 до 4 раз, предпочтительно, от 2 до 3 раз.
Предпочтительно, при разделении суспензии в магнитном поле в вертикальном кольцевом магнитном сепараторе, указанный сепаратор обеспечивает напряженность магнитного поля 15000 Гс или более, еще более предпочтительно от 15000 до 20000 Гс, более предпочтительно, от 15000 до 17500 Гс.
На стадии а) согласно одному из вариантов реализации настоящего изобретения, фильтрационный осадок летучей золы, образующейся в циркулирующем кипящем слое, подвергаемый магнитному разделению, помещают в кислотоустойчивый реактор и затем добавляют в него соляную кислоту с предпочтительной концентрацией 20-37 масс.% для проведения реакции кислотного растворения. Согласно предпочтительному варианту реализации настоящего изобретения, молярное отношение HCl, содержащегося в соляной кислоте, к глинозему, содержащемуся в летучей золе, составляет от 4:1 до 9:1.
Летучая зола и соляная кислота предпочтительно реагируют при температуре от 100 до 200°С и при давлении от 0,1 до 2,5 МПа и время реакции составляет от 0,5 до 4,0 часов. После завершения реакции, продукт реакции подвергают разделению на жидкую и твердую фазу и промывают с получением кислого фильтрата, значение рН которого составляет от 1 до 3. Процесс разделения на жидкую и твердую фазу может представлять собой любой из общепринятых способов, таких как разделение осаждением, вакуум-фильтрация, фильтрация под давлением или центрифугирование или т.п.
На стадии b) согласно одному из вариантов реализации настоящего изобретения, указанная макропористая катионная смола предпочтительно представляет собой D001, 732, 742, 7020Н, 7120Н, JK008 или SPC-1. Процесс адсорбирования продукта солянокислого выщелачивания можно осуществить любым из общепринятых способов. Однако предпочтительно проводить стадию b) таким способом, чтобы продукт солянокислого выщелачиванияпроходил через колонку со смолой снизу вверх при температуре от 20 до 90°С, так что фильтрат перемещается вверх в пустоты в смоле подобно поршню, при объемном потоке, в 1-4 раза превышающем объемный расход смолы за час. Колонка со смолой может представлять собой одну колонку или две колонки, расположенные каскадом.
При достижении насыщения адсорбции, макропористую катионную смолу элюируют с помощью элюирующего агента с получением элюента, содержащего галлий. Элюирующий агент может представлять собой воду или соляную кислоту. Согласно предпочтительному варианту реализации настоящего изобретения, элюирующий агент представляет собой соляную кислоту с концентрацией 2-10 масс. %. Согласно другому предпочтительному варианту реализации изобретения, при элюировании макропористой катионной смолы с помощью элюирующего агента, условия элюирования могут включать следующее: температура элюирования составляет от 20 до 60°С, количество элюирующего агента в 1-3 раза превышает объем смолы, объемный поток элюирующего агента в 1-3 раза превышает объемный расход смолы за час, и элюирующий агент при элюировании проходит через колонку со смолой сверху вниз.
Восстановить адсорбционную способность макропористой катионной смолы можно путем регенерации элюированной макропористой катионной смолы. Для регенерации применяют соляную кислоту с концентрацией 2-10 масс. %, при этом температура составляет от 20 до 60°С, количество соляной кислоты в 1-2 раза превышает объем смолы, объемный поток соляной кислоты в 1-3 раза превышает объемный расход смолы за час, а при регенерации соляная кислота проходит через колонку со смолой сверху вниз.
На стадии с) согласно одному из вариантов реализации настоящего изобретения, маскирующий агент может представлять собой одно или более соединений, выбранных из сульфита натрия, железного порошка, гидрохлорида гидроксиламина и витамина С. Согласно предпочтительному варианту реализации настоящего изобретения, молярное отношение маскирующего агента к ионам железа, содержащимся в элюенте, в конечном счете полученном на стадии b), составляет 1-2:1. При применении железного порошка в качестве маскирующего агента, непрореагировавший железный порошок необходимо удалить из элюента путем разделения на жидкую и твердую фазу после того, как железный порошок прореагирует с элюентом, а затем элюент, подвергаемый разделению, пропускают через колонку, заполненную смолой.
Согласно предпочтительному варианту реализации настоящего изобретения, на стадии с), указанная макропористая катионная смола представляет собой смолу D001, 732, 742,7020Н, 7120Н, JK008 или SPC-1.
Согласно другому предпочтительному варианту реализации изобретения, на стадии с) адсорбция элюента, содержащего маскирующий агент, с помощью смолы может включать стадии прохождения элюента через колонку, заполненную смолой, снизу вверх при температуре от 20 до 90°С, при объемном потоке, в 1-4 раза превышающем объемный расход смолы за час.
Согласно другому предпочтительному варианту реализации изобретения, на стадии с) концентрация элюирующего агента (т.е. соляной кислоты) составляет 2-10 масс. %, при этом условия элюирования включают следующее: температура элюирования составляет от 20 до 60°С, количество элюирующего агента в 1-3 раза превышает объем смолы, объемный поток элюирующего агента в 1-3 раза превышает объемный расход смолы за час.
На стадиях b) и с) согласно одному из вариантов реализации настоящего изобретения, указанная макропористая катионная смола может представлять собой сильнокислотную катионную смолу, такую как стирольные смолы или акриловые смолы. Важнейшие технические характеристики смолы включают влагосодержание от 50,5 до 70,0%, обменную емкость 3,60 ммоль/г или более, объемную обменную емкость 1,2 ммоль/г или более, объемную плотность во влажном состоянии от 0,6 до 0,80 г/мл, размер частиц от 0,315 до 1,250 мм, действительный размер частиц от 0,400 до 0,700 мм и максимальную рабочую температуру 95°С.
На стадии d) согласно одному из вариантов реализации настоящего изобретения, раствор гидроксида натрия предпочтительно добавляют во вторичный элюент при перемешивании, и концентрация раствора гидроксида натрия составляет от 180 до 245 г/л, при этом вторичный элюент реагирует с раствором гидроксида натрия при температуре от 20 до 100°С. Согласно предпочтительному варианту реализации настоящего изобретения, отношение массы гидроксида натрия к глинозему, содержащемуся в элюенте, составляет от 1:1 до 2:1, так что хлорид алюминия и хлорид галлия, содержащиеся во вторичном элюенте, могут реагировать с гидрохлоридом натрия с получением метаалюмината натрия/метагаллата натрия, при этом небольшое количество хлорида железа осаждается в форме гидроксида железа. Продукт реакции разделяют на жидкую и твердую фазу и промывают с получением основного раствора, содержащего алюминий и галлий.
На стадии d) согласно одному из вариантов реализации настоящего изобретения, регулируют щелочность основного раствора, содержащего алюминий и галлий, и концентрируют, так что как содержание галлия, так и содержание гидроксида натрия составляют 1 моль/л или более. Затем, проводят электролиз с получением продукта в виде металлического галлия. Предпочтительные электролитические параметры включают платиновый электрод в качестве отрицательного и положительного электродов, ток электролиза, составляющий 180-200 мА/л, напряжение электролиза, составляющее 4В и температуру электролитической ванны, составляющую 35-45°С.
По сравнению с процессами в известном уровне техники, преимущества настоящего изобретения включают следующие аспекты. В настоящем изобретении образующуюся в циркулирующем кипящем слое летучую золу с высокой активностью применяют в качестве сырьевого материала и галлий извлекают из указанной летучей золы с помощью прямого кислотного процесса выщелачивания, что позволяет избавиться от стадии прокаливания и активации в присутствии карбоната натрия при высокой температуре и, таким образом, упрощает технологические процессы и снижает себестоимость. Кислотное выщелачивание летучей золы происходит в кислотоустойчивом реакторе при умеренной температуре (от 100 до 200°С), и соответственно, эффективность выщелачивания глинозема высока и составляет 80% или более. При использовании для адсорбции галлия макропористой катионной смолы эффективный КПД адсорбции галлия в продукте солянокислого выщелачивания составляет 96% или более. Отношение массы галлия к глинозему в элюенте, полученном при двухразовой адсорбции с применением смолы, достигает 0,005 или более. При обогащении галлия в продукте солянокислого выщелачивания с помощью макропористой катионной смолы, также происходит эффективное удаление железа, содержащегося в продукте солянокислого выщелачивания, что создает предпочтительные условия для последующего получения глинозема высокого качества. Предложенный способ является простым, технологический процесс легко контролировать, степень извлечения галлия высока, стоимость производства низкая, и качество продукции стабильное.
Кроме того, экспериментальное изучение показало, что, поскольку применяют аппарат для разделения в магнитном поле согласно настоящему изобретению, эффективность удаления железа улучшается на 20% или более, а коэффициент удаления железа увеличивается от 60% до 80%, что значительно уменьшает расходы при обезжелезивании раствора в последующих процессах, и, тем самым, снижает себестоимость и повышает эффективность производства.
Краткое описание чертежей
На фиг.1 изображена блок-схема способа согласно настоящему изобретению.
На фиг.2 приведено схематическое изображение вертикального кольцевого магнитного сепаратора, применяемого согласно одному из предпочтительных вариантов реализации настоящего изобретения.
Подробное описание настоящего изобретения
Далее способ согласно настоящему изобретению будет подробно описан со ссылками на чертежи, однако следует понимать, что настоящее изобретение не ограничено ими никоим образом.
Структура вертикального кольцевого магнитного сепаратора, применяемого в приведенных ниже примерах, показана на фиг.2. Вертикальный кольцевой магнитный сепаратор содержит вращающееся кольцо 101, индуктивные средства 102, верхнее железное ярмо 103, нижнее железное ярмо 104, магнитную катушку возбуждения 105, загрузочное отверстие 106 и хвостовой поддон 107, и также включает пульсирующий механизм 108 и промывочное устройство для промывки водой 109.
Вращающееся кольцо 101 представляет собой несущий элемент в форме кругового кольца, в котором переносят индуктивные средства 102. При вращении вращающегося кольца 101, индуктивные средства 102 и адсорбированные на них вещества двигаются вместе так, чтобы произошло разделение адсорбированных веществ. Вращающееся кольцо 101 может быть выполнено из любого подходящего материала, такого как углеродистая сталь и т.п.
Электродвигатель или другое приводное устройство может снабжать вращающееся кольцо 101 энергией, так что указанное кольцо 101 может вращаться с заданной скоростью.
В случае, если параметры, такие как содержание железа или количество материала, подвергаемого обработке, имеют значение ниже заданного, можно использовать сравнительно низкую скорость вращения, такую как 3 об./мин, благодаря чему ферромагнитные примеси имеют достаточно времени для адсорбирования на сетки индуктивных средств под действием магнитного поля и разделения.
Индуктивные средства 102 расположены во вращающемся кольце. Магнитное поле, генерируемое магнитной катушкой возбуждения 105, превращает верхнее железное ярмо 103 и нижнее железное ярмо 104 в пару магнитных полюсов, генерирующих магнитное поле в вертикальном направлении. Верхнее железное ярмо 103 и нижнее железное ярмо 104 расположены на внутренней и внешней сторонах нижней части вращающегося кольца 101, так что вращающееся кольцо 101 вращается между магнитными полюсами. При вращении вращающегося кольца 101, индуктивные средства 102 в кольце 101 будет проходить через пару магнитных полюсов, образованных верхним железным ярмом 103 и нижним железным ярмом 104 и подвергаться намагничиванию для удаления железа.
Индуктивные средства 102 может представлять собой слои сетки, сделанных из листовой стали. Сетки из листовой стали выполнены из 1Cr17. Каждый слой сеток из листовой стали образован переплетениемпроволоки, причем плетеная сетка имеет форму ромба. Края проволоки имеют призматические острые углы. Верхнее железное ярмо 103 сообщается с загрузочным отверстием 106, а нижнее железное ярмо 104 сообщается с хвостовым поддоном 107, который используют для выгрузки материалов. Среднее расстояние между слоями сеток из листовой стали составляет 3 мм. Магнитная катушка возбуждения 105 представляет собой соленоид из плоской алюминиевой проволоки с двойной стеклянной оболочкой, и представляет собой одножильный провод. Ток, проходящий через магнитную катушку возбуждения 105, плавно регулируют, и соответственно, также плавно регулируют силу магнитного поля, генерируемого магнитной катушкой 105.
Вертикальный кольцевой магнитный сепаратор дополнительно содержит пульсирующий механизм 108, связанный с хвостовым поддоном 107 посредством резиновой пластины 111. Пульсирующий механизм может функционировать за счет эксцентрикового рычажного механизма, так что знакопеременная сила, генерируемая пульсирующим механизмом 108, давит на резиновую пластину 111, заставляя ее перемещаться вперед и назад, при этом минеральная суспензия в хвостовом поддоне 107 может создавать пульсации.
Промывочное устройство для промывки водой 109 расположено над вращающимся кольцом 101, и предназначена для смывания магнитных частиц в бункер для концентрирования под действием потока воды. Промывочное устройство для промывки водой 109 может представлять собой различные подходящие смывающие или разбрызгивающие устройства, такие как распылительная насадка, водопроводная труба и т.п.
Загрузочное отверстие 106 сообщается с боковой поверхностью верхнего железного ярма 103, так что летучая зола может проходить через вращающееся кольцо. Загрузочное отверстие 106 может представлять собой загрузочный бункер или загрузочную трубу. Загрузочное отверстие 106 выполнено с возможностью подачи минеральной суспензии, так что минеральная суспензия поступает в верхнее железное ярмо 103 со сравнительно небольшой высоты для предотвращения проникновения магнитных частиц в индуктивные средства 102 за счет гравитации, что, таким образом, улучшает результат магнитного разделения и удаления примесей.
Вертикальный кольцевой магнитный сепаратор дополнительно содержит охлаждающее устройство 112, которое установлено вблизи магнитной катушки возбуждения для уменьшения ее рабочей температуры. Охлаждающее устройство представляет собой водяную рубашку с камерами для выравнивания давления. Водяная рубашка с камерами для выравнивания давления выполнена из нержавеющей стали, и таким образом, не проявляет склонности к образованию окалины. Поскольку камеры для выравнивания давления установлены, соответственно, на входе и выходе из водяной рубашки, они обеспечивают равномерное прохождение воды через каждый слой водяной рубашки и заполнение всего ее внутреннего пространства, препятствуя, таким образом, протеканию местной воды по кратчайшему пути, что, в противном случае, влияло бы на рассеяние тепла. Каждый слой водяной рубашки имеет водовод с большой площадью поперечного сечения, что, таким образом, позволяет полностью избежать засорения за счет образования окалины. Даже если где-то имеется закупорка, она не будет влиять на нормальное протекание циркулирующей воды в водяной рубашке. Кроме того, водяная рубашка находится в тесном контакте с катушкой вследствие большой площади контакта, соответственно, большую часть тепла, вырабатываемую катушкой, можно отвести с потоком воды.
По сравнению с обычной полой медной трубкой для рассеяния тепла, водяная рубашка с камерами для выравнивания давления характеризуется высокой эффективностью рассеяния тепла, небольшим повышением температуры обмотки и низкой мощностью возбуждения. В случае номинального тока возбуждения, равного 40А, мощность магнитного сепаратора, оборудованного водяной рубашкой с камерами для выравнивания давления для рассеяния тепла, можно снизить с 35 кВт до 21 кВт.
При работе магнитного сепаратора, подаваемая минеральная суспензия проходит вдоль прорези верхнего железного ярма 103, а затем через вращающееся кольцо 101. Поскольку индуктивные средства 102 во вращающемся кольце 101 намагничено в фоновом магнитном поле, на поверхности индуктивных средств 102 формируется магнитное поле с очень высокой мощностью магнитной индукции (такой как 22000 Гс). Под действием очень сильного магнитного поля магнитные частицы в минеральной суспензии прилипают к поверхности индуктивных средств 102 и вращаются с вращающимся кольцом 101, перемещаясь на участок без магнитного поля в верхней части вращающегося кольца 101. Затем, магнитные частицы смывают в бункер для концентрирования с помощью промывочного устройства для промывки водой 109, расположенной выше верхней части вращающегося кольца. Немагнитные частицы проходят вдоль прорези нижнего железного ярма 104 в хвостовой поддон 107 и далее их выгружают через хвостовой выход хвостового поддона 107.
Далее способ согласно настоящему изобретению будет подробно описан со ссылками на примеры, однако, следует понимать, что настоящее изобретение не ограничено ими никоим образом.
В приведенных ниже примерах, летучую золу, образующуюся в циркулирующем кипящем слое и выбрасываемую теплоэлектростанцией, используют в качестве сырьевого материала, химические компоненты, входящие в состав такой золы, показаны в таблице 1. Содержание галлия в летучей золе составляет 0,0042 масс. %
Пример 1
В примере применяли следующий порядок проведения эксперимента.
(1) Летучую золу, образующуюся в циркулирующем кипящем слое, измельчали до размера 200 меш, удаляли железо путем мокрой магнитной сепарации, используя вертикальный магнитный сепаратор, изображенный на фиг.2, так что содержание оксида железа в летучей золе уменьшалось до 0,8 масс. %; помещали фильтрационный осадок летучей золы, полученный после магнитного разделения, в кислотоустойчивый реактор и добавляли в него техническую соляную кислоту с концентрацией 37 масс. % для проведения реакции кислотного растворения, при этом молярное отношение HCl, содержащегося в соляной кислоте, к глинозему, содержащемуся в летучей золе, составляло 4,5:1, температура реакции составляла 150°С, реакционное давление составляло 2,1 МПа и время реакции составляло 2 часа; и затем отфильтровывали под давлением выгружаемый продукт реакции с применением рамного фильтр-пресса и далее промывали с получением продукта солянокислого выщелачивания с рН 1,7, причем эффективность выщелачивания галлия из летучей золы была измерена и составляла 84,2%.
(2) продукт солянокислого выщелачиванияохлаждали за счет теплообмена до температуры 65°С, затем с применением коррозионностойкого насоса закачивали продукт солянокислого выщелачиванияв колонку со смолой (одну колонку, заполненную смолой D001 (Anhui Wandong Chemical Plant)) для обогащения галлия, при этом расход продукта солянокислого выщелачивания в 2 раза превышал объемный расход смолы за час; при достижении насыщения адсорбции, элюировали колонку со смолой, применяя 4 масс. % соляную кислоту в качестве элюирующего агента, при 25°С с получением обогащенного галлием элюента, при этом расход соляной кислоты в 2 раза превышал объемный расход смолы за час, и общее количество элюирующего агента, применяемого для элюирования, в 2 раза превышало объем смолы; и регенерировали смолу, применяя 4 масс.% соляную кислоту, причем КПД адсорбции галлия в кислом фильтрате был измерен и составлял 96,4%.
(3) при перемешивании добавляли в обогащенный галлием элюент 5 масс.% сульфит натрия в качестве маскирующего агента для иона железа, при этом молярное отношение маскирующего агента к ионам железа, содержащимся в элюенте, составляло 1:1;
(4) после маскировки железа дополнительно обогащали галлий в элюенте, как на стадии 2, при этом отношение массы галлия к глинозему, содержащемуся в элюенте, полученном на этой стадии, было измерено и составляло 0,005 после дважды проведенного обогащения;
(5) добавляли раствор гидроксида натрия с концентрацией 180 г/л в элюент, полученный на стадии (4), так что отношение массы гидроксида натрия к глинозему, содержащемуся в элюенте, составляло 2:1, проводили реакцию при 25°С и подвергали продукт реакции фильтрации и промыванию с получением основного раствора, обогащенного галлием; затем регулировали содержание галлия до 1,3 моль/л и проводили электролиз с применением платиновых электродов в качестве отрицательного и положительного электродов, при этом ток электролиза составлял 200 мА/л, напряжение электролиза составляло 4В и температура электролитической ванны составляла 40°С, с получением продукта в виде металлического галлия. Содержание галлия в продукте было измерено согласно способу, описанному в “YS/T520-2007 Methods for Chemical Analysis of Gallium”, и составляло 99,9%.
Пример 2
Рабочие условия были такими же, что и условия, описанные в примере 1, за исключением стадии (1). Стадия (1) была изменена следующим образом:
Летучую золу, образующуюся в циркулирующем кипящем слое, измельчали до размера 150 меш, удаляли железо путем мокрой магнитной сепарации, используя вертикальный магнитный сепаратор, изображенный на фиг.2, так что содержание оксида железа в летучей золе уменьшалось до 0,8 масс. %; помещали фильтрационный осадок летучей золы, полученный после магнитного разделения, в кислотоустойчивый реактор и добавляли в него техническую соляную кислоту с концентрацией 28 масс. % для проведения реакции кислотного растворения, при этом молярное отношение HCl, содержащегося в соляной кислоте, к глинозему, содержащемуся в летучей золе, составляло 5:1, температура реакции составляла 150°С, реакционное давление составляло 1,0 МПа и время реакции составляло 2 ч; затем отфильтровывали под давлением выгружаемый продукт реакции с применением рамного фильтр-пресса и далее промывали с получением продукта солянокислого выщелачивания с рН 1,5, причем эффективность выщелачивания галлия из летучей золы была измерена и составляла 82.8%.
Содержание галлия в полученном продукте было измерено и составляло 99,9%.
Пример 3
Рабочие условия были такими же, что и условия, описанные в примере 1, за исключением стадии (1). Стадия (1) была изменена следующим образом:
Летучую золу, образующуюся в циркулирующем кипящем слое, измельчали до размера 200 меш, удаляли железо путем мокрой магнитной сепарации, используя вертикальный магнитный сепаратор, изображенный на фиг.2, так что содержание оксида железа в летучей золе уменьшалось до 0,8 масс. %; помещали фильтрационный осадок летучей золы, полученный после магнитного разделения, в кислотоустойчивый реактор и добавляли в него техническую соляную кислоту с концентрацией 20 масс. % для проведения реакции кислотного растворения, при этом молярное отношение HCl, содержащегося в соляной кислоте, к глинозему, содержащемуся в летучей золе, составляло 8:1, температура реакции составляла 100°С, реакционное давление составляло 0,1 МПа и время реакции составляло 4 ч; затем отфильтровывали под давлением выгружаемый продукт реакции с применением рамного фильтр-пресса и далее промывали с получением продукта солянокислого выщелачивания с рН 1,4, причем эффективность выщелачивания галлия из летучей золы была измерена и составляла 80,1%.
Содержание галлия в полученном продукте было измерено и составляло 99,9%.
Пример 4
Рабочие условия были такими же, что и условия, описанные в примере 1, за исключением стадии (2). Стадия (2) была изменена следующим образом:
Продукт солянокислого выщелачиванияохлаждали за счет теплообмена до температуры 90°С, затем закачивали продукт солянокислого выщелачивания в помощью коррозионностойкого насоса в колонки со смолой (две колонки, соединенные последовательно и заполненные смолой JK008 (Anhui Wandong Chemical Plant)) для обогащения галлия, при этом расход продукта солянокислого выщелачивания в 4 раза превышал объемный расход смолы за час; и при достижении насыщения адсорбции, элюировали колонки со смолой, применяя 2 масс.% соляную кислоту в качестве элюирующего агента, при 60°С с получением обогащенного галлием элюента, при этом расход соляной кислоты был равен объемному расходу смолы за час, и общее количество элюирующего агента, применяемого для элюирования, в 2 раза превышало объем смолы, причем КПД адсорбции галлия в кислом фильтрате был измерен и составлял 96.9%.
Содержание галлия в полученном продукте было измерено и составляло 99,9%.
Пример 5
Рабочие условия были такими же, что и условия, описанные в примере 1, за исключением стадии (2). Стадия (2) была изменена следующим образом:
Продукт солянокислого выщелачивания охлаждали за счет теплообмена до температуры 70°С, затем закачивали продукт солянокислого выщелачивания в помощью коррозионностойкого насоса в колонку со смолой (одну колонку, заполненную смолой 732 (Anhui Sanxing Resin Ltd., Co)) для обогащения галлия, при этом расход продукта солянокислого выщелачивания был равен объемному расходу смолы за час; и при достижении насыщения адсорбции, элюировали колонку со смолой, используя воду в качестве элюирующего агента, при 60°С с получением обогащенного галлием элюента, при этом расход воды был равен объемному расходу смолы за час, общее количество элюирующего агента, применяемого для элюирования, в 3 раз превышало объем смолы, и КПД адсорбции галлия в кислом фильтрате был измерен и составлял 96,2%.
Содержание галлия в полученном продукте было измерено и составляло 99,9%.
Пример 6
Рабочие условия были такими же, что и условия, описанные в примере 1, за исключением стадии (2). Стадия (2) была изменена следующим образом:
Продукт солянокислого выщелачивания охлаждали за счет теплообмена до температуры 40°С, затем закачивали продукт солянокислого выщелачивания в помощью коррозионностойкого насоса в колонку со смолой (одна колонка, заполненная смолой SPC-1 (Shanghai Resin Plant)) для обогащения галлия, при этом расход продукта солянокислого выщелачивания был равен объемному расходу смолы за час; и при достижении насыщения адсорбции, элюировали колонку со смолой, используя 10 масс. % соляную кислоту в качестве элюирующего агента, при 30°С с получением обогащенного галлием элюента, при этом расход соляной кислоты в 3 раз превышал объемный расход смолы за час, и общее количество элюирующего агента, применяемого для элюирования, было равно объемному расходу смолы и КПД адсорбции галлия в кислом фильтрате был измерен и составлял 96.5%.
Содержание галлия в полученном продукте было измерено и составляло 99,9%.
Пример 7
Рабочие условия были такими же, что и условия, описанные в примере 1, за исключением стадии (3). Стадия (3) была изменена следующим образом:
При перемешивании добавляли в обогащенный галлием элюент железный порошок в качестве маскирующего агента, при этом молярное отношение маскирующего агента к ионам железа, содержащимся в элюенте, составляло 2:1, и затем удаляли непрореагировавший железный порошок путем разделения на жидкую и твердую фазу.
Содержание галлия в полученном продукте было измерено и составляло 99,9%.
Пример 8
Рабочие условия были такими же, что и условия, описанные в примере 1, за исключением стадии (3). Стадия (3) была изменена следующим образом:
При перемешивании добавляли в обогащенный галлием элюент 3 масс. % водный раствор витамина С в качестве маскирующего агента, при этом молярное отношение маскирующего агента к ионам железа, содержащимся в элюенте, составляло 1,5:1.
Содержание галлия в полученном продукте было измерено и составляло 99,9%.
Пример 9
Рабочие условия были такими же, что и условия, описанные в примере 1, за исключением стадии (5). Стадия (5) была изменена следующим образом:
К элюенту, полученному на стадии (4), добавляли раствор гидроксида натрия с концентрацией 240 г/л, так что отношение массы гидроксида натрия к глинозему, содержащемуся в элюенте, составляло 1:1, проводили реакцию при 90°С и подвергали продукт реакции фильтрации и промыванию с получением основного раствора, обогащенного галлием; затем регулировали содержание галлия до 1,1 моль/л и проводили электролиз с применением платиновых электродов в качестве положительного электрода при токе электролиза, составляющем 180 мА/л, напряжении электролиза, составляющем 4В, и температуре электролитической ванны, составляющей 40°С, с получением продукта в виде металлического галлия.
Содержание галлия в полученном продукте было измерено и составляло 99,9%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ ГАЛЛИЯ ИЗ ЛЕТУЧЕЙ ЗОЛЫ | 2011 |
|
RU2507282C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛУРГИЧЕСКОГО ГЛИНОЗЕМА С ПРИМЕНЕНИЕМ ЛЕТУЧЕЙ ЗОЛЫ, ОБРАЗУЮЩЕЙСЯ В КИПЯЩЕМ СЛОЕ | 2011 |
|
RU2510365C1 |
СПОСОБ РАЗДЕЛЕНИЯ И ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ | 2007 |
|
RU2386709C1 |
СПОСОБ ПОЛУЧЕНИЯ АКТИВНОЙ ФАРМАЦЕВТИЧЕСКОЙ СУБСТАНЦИИ ДЛЯ СИНТЕЗА ПРЕПАРАТОВ ГАЛЛИЯ-68 | 2013 |
|
RU2522892C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ДРАГОЦЕННОГО МЕТАЛЛА ИЗ ВОДНЫХ ЩЕЛОЧНЫХ РАСТВОРОВ ЦИАНИДА | 1993 |
|
RU2114924C1 |
МОНОДИСПЕРСНЫЕ МАКРОПОРИСТЫЕ, СОДЕРЖАЩИЕ ПИКОЛИНАМИННЫЕ ГРУППЫ ХЕЛАТНЫЕ СМОЛЫ ДЛЯ СОРБЦИИ МЕТАЛЛОВ ИЗ ПУЛЬП, СПОСОБ ИХ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ | 2007 |
|
RU2434062C2 |
СПОСОБ ОЧИСТКИ ЦИКЛОЛИПОПЕПТИДНЫХ СОЕДИНЕНИЙ ИЛИ ИХ СОЛЕЙ | 2011 |
|
RU2535489C1 |
СПОСОБ ПОЛУЧЕНИЯ ОБЩЕГО КОЛИЧЕСТВА ФЕНОЛЬНОЙ КИСЛОТЫ ИЗ ШАЛФЕЯ МНОГОКОРНЕВОГО (ДАНЬШЕНЯ) И ЕЕ ПРИМЕНЕНИЕ | 2003 |
|
RU2317973C2 |
СПОСОБ ПОЛУЧЕНИЯ РАСТВОРОВ Ga ВЫСОКОЙ ЧИСТОТЫ | 2011 |
|
RU2464043C1 |
Способ извлечения платины, палладия и золота из технологических растворов | 2021 |
|
RU2778081C1 |
Изобретение относится к способу извлечения галлия из летучей золы. Способ включает измельчение летучей золы и удаление Fе с помощью магнитной сепарации. Затем ведут растворение ее соляной кислотой с получением продукта солянокислого выщелачивания, адсорбирование галлия с помощью макропористой катионной смолы и последующее элюирование с получением элюента, содержащего галлий. Затем добавляют маскирующий агент для маскировки иона трехвалентного железа с получением элюента, содержащего галлий. После маскировки проводят адсорбирование галлия в элюенте с помощью макропористой катионной смолы с последующим элюированием и получением вторичного элюента, добавление раствора гидроксида натрия во вторичный элюент для протекания реакции, фильтрование и удаление осадка после завершения реакции. Затем ведут концентрирование фильтрата и проводят электролиз с получением металлического галлия. Техническим результатом является упрощение технологического процесса и повышение степени извлечения галлия. 3 н. и 16 з.п. ф-лы, 2 ил., 1 табл., 9 пр.
1. Способ извлечения галлия из летучей золы, включающий следующие стадии:
a) измельчение летучей золы до размера 100 меш или меньше, удаление железа путем мокрой магнитной сепарации для уменьшения содержания оксидов железа в летучей золе до 1,0 мас.% или менее, затем добавление соляной кислоты в обезжелезенную летучую золу для реакции кислотного выщелачивания, и разделение продукта реакции на жидкую и твердую фазу с получением продукта солянокислого выщелачивания, имеющего рН от 1 до 3,
b) адсорбирование галлия, содержащегося в продукте солянокислого выщелачивания, путем пропускания его через колонку, заполненную макропористой катионной смолой, и при достижении насыщения адсорбции элюирование колонки водой или соляной кислотой в качестве элюирующего агента с получением галлийсодержащего элюента,
c) маскировка ионов трехвалентного железа в галлийсодержащем элюенте с помощью маскирующего агента с последующим пропусканием замаскированного элюента через колонку, заполненную макропористой катионной смолой, и при достижении адсорбцией насыщения элюирование колонки водой или соляной кислотой в качестве элюирующего агента с получением второго элюента, и
d) добавление щелочного раствора во второй элюент, удаление осадка путем фильтрования после завершения реакции и концентрирование фильтрата до тех пор, пока и содержание галлия, и содержание гидроксида натрия не составит 1 моль/л или более, затем проведение электролиза концентрированного фильтрата с получением металлического галлия, причем при реакции кислотного выщелачивания на стадии а) температура реакции составляет от 100 до 200°С, реакционное давление составляет от 0,1 до 2,5 МПа, и на обеих стадиях b) и c) макропористая катионная смола выбрана из любой смолы из D001, 732 и 742.
2. Способ по п.1, отличающийся тем, что на стадии а) концентрация соляной кислоты составляет от 20 до 37 мас.%, молярное отношение HCl, содержащегося в гидрохлориде, к глинозему, содержащемуся в летучей золе, составляет от 4:1 до 9:1.
3. Способ по п.2, отличающийся тем, что при реакции кислотного выщелачивания на стадии а) время реакции составляет от 0,5 до 4,0 ч.
4. Способ по п.3, отличающийся тем, что на стадии b) осуществляют адсорбирование галлия, содержащегося в продукте солянокислого выщелачивания, путем пропускания продукта солянокислого выщелачивания через колонку снизу вверх при объемном потоке, в 1-4 раза превышающем объемный расход смолы за час, при температуре от 20 до 90°С.
5. Способ по п.1, отличающийся тем, что на стадиях b) и c) колонку элюируют 2-10 мас.% соляной кислотой в качестве элюирующего агента и температура элюирования составляет от 20 до 60°С, количество применяемого элюирующего агента в 1-3 раза превышает объем смолы, и скорость элюирования в 1-3 раза превышает объемный расход смолы за час.
6. Способ по п.1, отличающийся тем, что на стадии с) маскирующий агент представляет собой одно или более соединений, выбранных из группы, состоящей из сульфита натрия, железного порошка, гидрохлорида гидроксиламина и витамина С, предпочтительно, что на стадии с) молярное отношение маскирующего агента к ионам железа, содержащимся в элюенте, полученном на стадии b), составляет 1-2:1.
7. Способ по п.6, отличающийся тем, что на стадии с) замаскированный элюент пропускают через колонку снизу вверх при температуре от 20 до 90°С, при объемном потоке, в 1-4 раза превышающем объемный расход смолы за час.
8. Способ по п.1, отличающийся тем, что на стадии d) щелочной раствор представляет собой раствор гидроксида натрия, концентрация которого составляет от 180 до 245 г/л, отношение массы гидроксида натрия к глинозему, содержащемуся во втором элюенте, составляет от 1:1 до 2:1, также предочтительно на стадии d) температура реакции составляет от 20 до 100°С.
9. Способ по п.1, отличающийся тем, что на стадии d) для электролиза с получением металлического галлия применяют платиновые электроды в качестве отрицательного и положительного электродов.
10. Способ по любому из пп.1-9, отличающийся тем, что стадию а) проводят в устройстве, используемом для удаления железа путем мокрой магнитной сепарации, представляющем собой вертикальный кольцевой магнитный сепаратор, включающий вращающееся кольцо, индуктивные средства, верхнее железное ярмо, нижнее железное ярмо, магнитную катушку возбуждения, загрузочное отверстие, хвостовой поддон и промывочное устройство для промывки водой, при этом загрузочное отверстие используют для подачи летучей золы, подвергаемой обезжелезиванию, хвостовой поддон используют для выгрузки немагнитных частиц после обезжелезивания, верхнее железное ярмо и нижнее железное ярмо расположены соответственно на внутренней и внешней сторонах нижней части вращающегося кольца, промывочное устройство для промывки водой расположено над вращающимся кольцом, индуктивные средства расположены во вращающемся кольце, магнитная катушка возбуждения расположена на периферии верхнего железного ярма и нижнего железного ярма таким образом, что указанные верхнее ярмо и нижнее ярмо образуют пару магнитных полюсов для генерирования магнитного поля в вертикальном направлении, причем индуктивные средства представляют собой слои из сеток из листовой стали, при этом каждая сетка из листовой стали образована переплетением проволоки, края которой имеют призматические острые углы.
11. Способ по п.10, отличающийся тем, что вертикальный кольцевой магнитный сепаратор дополнительно содержит водяную рубашку с камерами для выравнивания давления, расположенную вблизи магнитной катушки возбуждения.
12. Способ по п.11, отличающийся тем, что среднее расстояние между слоями сетки из листовой стали составляет от 2 до 5 мм, предпочтительно 3 мм, сетка выполнена из листовой стали 1Cr17.
13. Способ по п.12, отличающийся тем, что толщина сетки из листовой стали составляет от 0,8 до 1,5 мм, размер отверстий сетки составляет от 3 мм × 8 мм до 8 мм × 15 мм, а толщина проволоки составляет от 1 до 2 мм, предпочтительно толщина сетки из листовой стали составляет 1 мм, размер отверстий сетки составляет 5 мм × 10 мм, а толщина проволоки составляет 1,6 мм.
14. Способ по п.13, отличающийся тем, что вертикальный кольцевой магнитный сепаратор дополнительно содержит пульсирующий механизм, связанный с хвостовым поддоном посредством резиновой пластины.
15. Способ по п.14, отличающийся тем, что индуктивные средства размещены по всей окружности вращающегося кольца.
16. Способ по п.15, отличающийся тем, что магнитная катушка возбуждения представляет собой соленоид из плоской алюминиевой проволоки с двойной стеклянной оболочкой.
17. Способ по п.16, отличающийся тем, что напряженность магнитного поля вертикального кольцевого магнитного сепаратора составляет 15000 Гс или более, предпочтительно от 15000 до 20000 Гс, еще более предпочтительно от 15000 до 17500 Гс.
18. Способ извлечения галлия из летучей золы, включающий следующие стадии:
а) измельчение летучей золы до размера 100 меш или меньше, удаление железа путем мокрой магнитной сепарации для уменьшения содержания оксидов железа в летучей золе до 1,0 мас.% или менее, затем добавление соляной кислоты в обезжелезенную летучую золу для реакции кислотного выщелачивания и разделение продукта реакции на жидкую и твердую фазу с получением продукта солянокислого выщелачивания, значение рН которого составляет от 1 до 3,
b) охлаждение продукта солянокислого выщелачивания до тех пор, пока его температура не составит 90°С, затем закачивание продукта солянокислого выщелачивания в колонку, заполненную смолой JK008, для обогащения галлия, при этом расход продукта солянокислого выщелачивания в 4 раза превышает объемный расход смолы за час, и при достижении адсорбцией насыщения, элюирование колонки 2 мас.% соляной кислотой в качестве элюирующего агента при 60°С с получением обогащенного галлием элюента, при этом расход соляной кислоты равен объемному расходу смолы за час, и общее количество элюирующего агента, применяемого для элюирования, в 2 раза превышает объем смолы,
c) маскировка ионов трехвалентного железа в галлийсодержащем элюенте с помощью маскирующего агента с последующим пропусканием замаскированного элюента через колонку, и при достижении адсорбцией насыщения, элюирование колонки водой или соляной кислотой в качестве элюирующего агента с получением второго элюента, и
d) добавление щелочного раствора во второй элюент, удаление осадка путем фильтрования после завершения реакции и концентрирование фильтрата до тех пор, пока и содержание галлия, и содержание гидроксида натрия не составит 1 моль/л или более, затем проведение электролиза концентрированного фильтрата с получением металлического галлия, при этом в реакции кислотного выщелачивания на стадии а) температура реакции составляет от 100 до 200°С, реакционное давление составляет от 0,1 до 2,5 МПа.
19. Способ извлечения галлия из летучей золы, включающий следующие стадии:
a) измельчение летучей золы до размера 100 меш или меньше, удаление железа путем мокрой магнитной сепарации для уменьшения содержания оксидов железа в летучей золе до 1,0 мас.% или менее, затем добавление соляной кислоты в обезжелезенную летучую золу для реакции кислотного выщелачивания, и разделение продукта реакции на жидкую и твердую фазу с получением продукта солянокислого выщелачивания, значение pH которого составляет от 1 до 3,
b) охлаждение продукта солянокислого выщелачивания до температуры 40°С, затем закачивание продукта солянокислого выщелачивания в колонку, заполненную смолой SPC-1, для обогащения галлия, при этом расход продукта солянокислого выщелачивания равен объемному расходу смолы за час, и при достижении адсорбцией насыщения, элюирование колонки 10 мас.% соляной кислотой в качестве элюирующего агента при 30°C с получением обогащенного галлием элюента, при этом расход соляной кислоты в 3 раза превышает объемный расход смолы за час, и общее количество элюирующего агента, применяемого для элюирования, равно объему смолы,
c) маскировка ионов трехвалентного железа в галлийсодержащем элюенте с помощью маскирующего агента с последующим пропусканием замаскированного элюента через колонку, и при достижении адсорбцией насыщения элюирование колонки водой или соляной кислотой в качестве элюирующего агента с получением второго элюента, и
d) добавление щелочного раствора во второй элюент, удаление осадка путем фильтрования после завершения реакции и концентрирование фильтрата до тех пор, пока и содержание галлия, и содержание гидроксида натрия не составит 1 моль/л или более, затем проведение электролиза концентрированного фильтрата с получением металлического галлия, причем при реакции кислотного выщелачивания на стадии а) температура реакции составляет от 100 до 200°С, реакционное давление составляет от 0,1 до 2,5 МПа.
CN 101368231 A, 18.02.2009 | |||
СПОСОБ ОБОГАЩЕНИЯ ГАЛЛИЕМ УГОЛЬНОЙ ЗОЛЫ-УНОСА | 1992 |
|
RU2020176C1 |
СПОСОБ ПЕРЕРАБОТКИ УГЛЯ | 2006 |
|
RU2324655C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ ГАЛЛИЯ ИЗ ТВЕРДЫХ ТОНКОДИСПЕРСНЫХ УГЛЕРОДСОДЕРЖАЩИХ МАТЕРИАЛОВ | 1992 |
|
RU2092601C1 |
JP S5852450 A, 28.03.1983 | |||
JP S60215721 А, 29.10.1985 | |||
US 4999171 A, 12.03.1991 | |||
CN 101130835 A, 27.02.2008. |
Авторы
Даты
2014-02-10—Публикация
2011-04-27—Подача