СПОСОБ ПОДАВЛЕНИЯ ОПУХОЛЕВОГО РОСТА В ЭКСПЕРИМЕНТЕ Российский патент 2014 года по МПК A61N5/02 B82B1/00 A61K31/196 A61K33/26 A61P35/00 

Описание патента на изобретение RU2506971C1

Изобретение относится к медицине, а именно, к экспериментальным исследованиям в онкологии и может быть использовано для оценки противоопухолевого действия наночастиц (НЧ) металлов.

При прогрессировании опухолевого процесса и развитии химиорезистентности на фоне химиотерапевтического лечения традиционная противоопухолевая терапия оказывается малоэффективной.

Характерный для опухолевой ткани анаэробный тип метаболизма, а также морфологические особенности опухоли, повышают чувствительность опухолевых клеток к термическому воздействию. Благодаря этому гипертермия является эффективным фактором индукции апоптоза и повышения чувствительности опухолевых клеток к химио- и/или лучевому воздействию. В экспериментальных и клинических исследованиях показано, что локальная гипертермия улучшает непосредственные результаты химиотерапии опухолей различной локализации (Sumio N., Yoshinobu K., Takeshi M., Taro. S., Masahiko H. Use of methotrexate, vinblastine, adriamycin, and cisplatinin combination with radiation and hyperthermia as neoadjuvant therapy for bladder cancer // Cancer Chemotherapy and Pharmacology. 1992. V.30 (1). S.63-65; Hoshina H., Takagi R., Tsurumaki H., Nagashima K. Et al. Clinical result of thermochemoradiotherapy for advanced head and neck cancer // Japanese Journal of Cancer and Chemotherapy. 2001. V.28 (3). P.331-336).

Однако комбинированное применение гипертермии и химиотерапии может усиливать токсичность цитостатических препаратов, что снижает эффективность лечения.

Известен способ индукции гибели опухолевых клеток и задержки роста экспериментальных опухолей при комбинированном использовании метотрексата (20 мг/кг) и гипертермии (нагрев до 43°С) с различной длительностью экспозиции (60 или 90 мин). При этом наиболее эффективным оказалось воздействие в течение 90 минут: увеличилось время нахождения химиопрепарата в ткани опухоли, увеличилось время задержки роста опухоли и процент частичной регрессии (в 75-100% случаев). Авторы отмечают, что данная комбинация, несмотря на выраженный противоопухолевый эффект, одновременно обладает наибольшей токсичностью, что снижает возможность ее применения в клиникой практике (Schopman E.M., Van Bree С., Kipp J.В., Barendsen G.W. Enhancement of the effectiveness of methotrexate for the treatment of solid tumors by application of local hyperthermia // Int J. Hyperthermia. 1995. 11 (4). P.561-573).

Широкому применению термохимиотерапии препятствует и то, что технические средства гипертермии не обеспечивают гомогенный нагрев опухоли, что снижает эффективность лечения. Кроме того, в распространенных рецидивных химио-радиорезистентных опухолях нередко развиваются фиброз, склероз, некроз и т.п., что повышает их термотолерантность и снижает эффективность воздействия. В связи с этим активно развиваются различные варианты локальной магнитной гипертермии с использованием НЧ, в которых вводимый в пораженный участок магнитный материал нагревается извне с помощью электромагнитного излучения.

Известен способ разрушения злокачественных опухолей при использовании магнитных НЧ (Jordan A., Scholz R., Maier-Hauff K., Johannsen М., Wust P., Nabodny J., Schirra H., Schmidt H., Deger S., Loening S., Lanksch W., Felix R. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia // J. Magnetism and Magnetic Materials. 2001. V.225. P.118-126). Разрушение клеток достигается путем введения в опухоль магнитных НЧ и их последующего термолиза в результате индукционного нагрева в переменном магнитном поле (в диапазоне частот 50-100 кГц). Однако данный способ требует использования мощных электромагнитов с токами в десятки кило-ампер на относительно высоких частотах. Кроме того, мощные переменные магнитные поля могут негативно влиять на мембранный транспорт и электрические процессы в клетках.

Известны способы нагревания опухоли с помощью НЧ оксидов железа и различных сплавов, НЧ коллоидного серебра, золота и т.д. (Якубовская Р.И., Панкратов А.А., Андреева Т.Н., Бенедиктова Ю.Б., Коган Б.Я., Бутенин А.В., Пучнова В.А., Фейзулова Р.А., Рудой В.М., Дементьева О.В., Карцева М.Е., Филипенко М.А., Чиссов В.И., Ворожцов Г.Н. Импульсная лазерная гипертермия с наночастицами в качестве термосенсибилизаторов - новый потенциальный метод противоопухолевой терапии // Российский онкологический журнал. 2010. №.6. С.32-36; Laurent S., Dutz S., Hafeli Urs O., Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles // Advances in Colloid and Interface Science. 2011. N.166. P.8-23). Таким образом одной из проблем в области разработки наночастиц для проведения гипертермии является поиск нетоксичных, безопасных для живого организма наночастиц.

Известен также способ использования наночастиц меди, железа или цинка, приводящий к гибели опухолевых клеток линейных и свежевыделенных культур (Е.Ю. Златник, Г.И. Закора, Л.В. Передреева, И.А. Горошинская. Способ индукции антипролиферативного цитотоксического эффекта в опухолевых клетках линейных и свежевыделенных культур // Патент №2392668 RU, БИ №17 от 20.06.2010). В данном способе культуру клеток линии миеломы Х563 инкубируют с указанными наночастицами в течение 30 мин. Клетки костномозгового пунктата больных множественной миеломой инкубируют с указанными наночастицами в течение 45 мин при 37°С.Ткань рака легкого культивируют с указанными наночастицами в диффузионных камерах, подшитых в брюшную полость крыс, в течение 6 дней. Однако данный способ не позволяет оценить как самостоятельного, так и сочетанного с термохимиотерапией влияния НЧ металлов на рост опухоли и определить потенциальную токсичность данного воздействия на организм-опухоленоситель.

Техническим результатом представленного изобретения является усиление противоопухолевого действия термохимиотерапии с помощью наночастиц железа без повышения токсичности воздействия на организм.

Данный технический результат достигается за счет того, что в способе подавления опухолевого роста в эксперименте, включающем сочетание действия на опухоль металлических наночастиц, гипертермии и химиотерапии, согласно изобретению, в перевиваемую лимфосаркому Плисса интратуморально вводят взвесь наночастиц железа в количестве 1,25 мг/кг, затем паратуморально вводят метотрексат в дозе 0,2 мг/кг и осуществляют локальный нагрев опухоли (42-43°С) электромагнитным излучателем УВЧ-диапазона с частой 12,7 МГц в течение 10 минут. Проводят 5 сеансов с интервалом между воздействиями 48 часов, после чего определяют индекс эффективности, процент случаев полной регрессии опухоли и процент торможения роста лимфосаркомы Плисса и устанавливают, что индекс эффективности равен 7,2, регрессия опухоли наступает в 40% случаев, а торможение роста опухоли в 60% случаев.

Способ подавления опухолевого роста в эксперименте выполняется следующим образом.

Нелинейным крысам-самцам весом 220-250 г для индукции лимфосаркомы Плисса осуществляют инъекцию 25% взвеси опухолевых клеток в объеме 0,6 мл подкожно в область спины. На 7 день после перевивки (когда объем опухоли в среднем достигает 4,8±0,5 см3) животным первой опытной группы паратуморально вводят МТ в дозе 0,2 мг/кг, с последующим локальным нагревом опухоли (до 42-43°С) электромагнитным излучателем УВЧ-диапазона с частотой 12,7 МГц в течение 10 мин. Животным второй опытной группы перед проведением термохимиотерапии в качестве термосенсибилизатора интратуморально вводят взвесь наночастиц железа в количестве 1,25 мг/кг. Для приготовления взвеси порошок наночастиц металлического железа, покрытых оксидной пленкой, сферической формы (диаметр: 30-70 нм; удельная поверхность (S): 10-25 м2/г) разводят в физиологическом растворе в концентрации 1 мг/мл. Через 15 минут проводят сеанс термохимиотерапии, аналогично воздействию в первой опытной группе животных. Контролем служат животные-опухоленосители без воздействия. Всего проводят 5 сеансов термохимиотерапии с интервалом 48 часов. Животных выводят из эксперимента путем декапитации на 7 сутки после пятого воздействия.

Критериями оценки влияния термохимиотерапии в сочетании с введением НЧ железа на рост лимфосаркомы Плисса служат: масса опухоли (М), объем опухоли (V); процент торможения роста опухоли (ТРО%), индекс эффективности (ИЭ). Для оценки токсического действия проводимых воздействий используют интегральные биохимические показатели эндогенной интоксикации: коэффициент интоксикации (КИ) и индекс токсичности (ИТ).

Объем опухоли рассчитывают по формуле Шрека: V=(a×b×c)×π/6, где а, b, с - линейные размеры опухоли (см), V - объем опухоли (см3) (см. Эммануэль Н.Н. Кинетика экспериментальных опухолевых процессов. М.: Наука, 1977. 416 с.).

Процент торможения роста опухоли оценивают по среднему объему или средней массе опухоли (TPOv%, TPOm%) в опытных группах по сравнению с контролем:

TPOv%=[(Vк-Vo)/Vк]×100%, где Vк и vo - средний объем (см3) опухоли в контрольной и опытной группах в конце эксперимента.

ТРОm%=[(Мко)/Мк]×100%, где Мк и Мо - средняя масса (г) опухоли в контрольной и опытной группах в конце эксперимента.

Индекс эффективности рассчитывают как отношение среднего значения массы опухоли в контроле к среднему значению массы опухоли в опыте: ИЭ=Мко (см. Ларионов Л.Ф. Химиотерапия злокачественных опухолей. М.: Медгиз, 1962. С.30).

Коэффициент интоксикации (КИ), отражающий баланс между накоплением и связыванием токсических лигандов, рассчитывают по формуле: КИ=(МСМ254/ЭКА)·1000, где МСМ254 - содержание молекул средней массы в плазме крови; ЭКА - эффективная концентрация альбумина в плазме крови (см. Матвеев С.Б. и соавт. Критерии оценки эндогенной интоксикации при ожоговой травме // Клиническая и лабораторная диагностика. 2003. №10. С.52-53).

Индекс токсичности (ИТ), характеризующий в значительной степени вклад недостаточности функций печени в развитие эндогенной интоксикации рассчитывают по формуле: ИТ=ОКА/ЭКА-1, где ОКА - общая концентрация альбумина в плазме крови, ЭКА -эффективная концентрация альбумина в плазме крови (см. Альбумин сыворотки крови в клинической медицине / Под ред. Ю.А. Грызунова, Г.Е. Добрецова. М.: ИРИУС, 1994. T.1. С.13-28). Содержание молекул средней массы (МСМ), определяют спектрофотометрически с регистрацией при длине волны 254 нм по методу Н.И. Габриэлян, В.И. Липатовой, 1984 (Габриэлян Н.И., Липатова В.И. Опыт использования показателей средних молекул в крови для диагностики нефрологических заболеваний у детей // Лабораторное дело. 1984. №3. С.138-140). Общую концентрацию альбумина определяют унифицированным колориметрическим методом с бромкрезоловым зеленым, оценку эффективной концентрации альбумина проводят по методу С.А. Чегера в модификации И.А. Мельника, П.В. Барановского, 1985 (Мельник И.А., Барановский П.В., Нестеренко Л.И. Новый способ оценки транспортной функции сывороточного альбумина // Лабораторное дело. 1985. №4. С.202-204).

Результаты представлены в таблицах 1 и 2.

После окончания воздействий термохимиотерапии с метотрексатом у животных-опухоленосителей первой группы в 25% случаев наблюдается полная регрессия опухоли, либо значительное торможение роста (V ср менее 1/4 V ср в контрольной группе) - в 25% случаев. Как видно из таблицы 1, у животных первой опытной группы средние значения объема и веса опухоли на момент забоя составляют: V ср - 33,63 см3, М ср - 36,5 г. В то же время у животных контрольной группы показатели объема и веса опухоли имеют следующие значения: V ср - 60,0 см3, М ср - 65,7 г. Процент торможения роста опухоли в первой опытной группе составляет: по массе опухолевого узла (Tm%) - 44,32%, по объему опухоли (Tv%) - 43,36%. Индекс эффективности воздействия составляет - 1,8.

Выраженный противоопухолевый эффект термохимиотерапии с метотрексатом сопровождается возникновением токсических реакций, о чем свидетельствуют данные изученных интегральных показателей эндогенной интоксикации. Как видно из таблицы 2, средние значения КИ и ИТ не имеют достоверных отличий от значений в контроле.

Таблица 1 Влияние термохимиотерапии на рост перевиваемой опухоли крыс лимфосаркомы Плисса Группа животных Масса опухоли (г) М±m Объем опухоли (см3) V±m Tm% Tv% ИЭ Контрольная группа n=10 65,7±3,68 59,38±3,32 - - - Первая группа: МТ + гипертермия n=8 36,58±8,5 р<0,05 33,63±8,15 р<0,05 44,32 43,36 1.8 Вторая группа: МТ+НЧ железа + Гипертермия n=8 9,11±3,05 р<0,02 7,86±2,3 р<0,02 86,13 86,76 7.2 Примечание: р - достоверность различий по сравнению со значением в контрольной группе.

Проведение термохимиотерапии с метотрексатом в сочетании с введением НЧ железа животным второй группы с лимфосаркомой Плисса приводит к полной регрессии опухоли в 40% случаев, в остальных 60% к значительному торможению роста опухоли. Из представленных в таблице №1 данных видно, что средний объем опухоли составляет - 7,86 см3, средняя масса - 9,11 г. Процент торможения роста опухоли по массе (Тm%) равен -86,13%, по объему (Tv%) - 86,76%. Индекс эффективности составляет 7,2.

Таблица 2 Изменение интегральных показателей эндогенной интоксикации при проведении термохимиотерапии Группа животных КИ ИТ Контрольная группа n=10 7,54±0,95 1,98±0,25 Первая группа: 7,62±1,52 1,91±0,52 МТ + гипертермия n=8 р>0,1 р>0,1 Вторая группа: 4,33±0,13 1,12±0,15 МТ+НЧ железа + гипертермия р<0,01 р<0,05 n=8 p1<0,05 p1<0,05 Примечание: р - достоверность различий по сравнению со значением в контрольной группе; p1 - достоверность различий по сравнению со значением в первой группе.

Изучение биохимических показателей эндогенной интоксикации в плазме крови крыс, получавших сеансы термохимиотерапии в комбинации с наночастицами металлического железа, свидетельствует о том, что происходит достоверное снижение значений КИ и ИТ по сравнению со значениями в первой группе на 43,2% и 41,4% соответственно.

Таким образом, интратуморальное введение НЧ металлического железа усиливает противоопухолевый эффект термохимиотерапии с метотрексатом. При этом наблюдается нормализация изученных показателей эндогенной интоксикации, что свидетельствует о меньшей токсичности применяемого способа воздействия.

Применение данного метода позволяет повысить противоопухолевую эффективность и снизить токсичность применяемой схемы термохимиотерапии за счет комбинированного воздействия на лимфосаркому Плисса метотрексата и УВЧ-гипертермией с использованием в качестве термосенсибилизатора НЧ металлического железа, которые усиливают цитотоксическое действие метотрексата и не усугубляют токсический эффект химиопрепарата.

Авторами в доступных источниках информации не было обнаружено сведений об известности предлагаемого способа. Таким образом, заявляемое изобретение соответствует критерию «новизна».

Исследованиями авторов установлено, что интратуморальное введение в перевиваемую лимфосаркому Плисса взвеси наночастиц железа в количестве 1,25 мг/кг, с последующим паратуморальным введением метотрексата в дозе 0,2 мг/кг и локальным нагревом опухоли (42-43°С) электромагнитным излучателем УВЧ-диапазона с частой 12,7 МГц в течение 10 минут, с проведением 5 таких сеансов с интервалом между воздействиями 48 часов, приводит к полной регрессии лимфосаркомы Плисса в 40% и к значительному торможению роста опухоли в 60% случаев, при этом индекс эффективности составляет 7,2. Таким образом, заявляемое изобретение соответствует критерию «изобретательский уровень».

Изобретение может быть использовано в здравоохранении при проведении экспериментальных исследований в области наноонкологии. Таким образом, изобретение соответствует критерию «промышленная применимость».

Похожие патенты RU2506971C1

название год авторы номер документа
СПОСОБ ТОРМОЖЕНИЯ РОСТА ЛИМФОСАРКОМЫ ПЛИССА В ЭКСПЕРИМЕНТЕ 2014
  • Горошинская Ирина Александровна
  • Качесова Полина Сергеевна
  • Немашкалова Людмила Анатольевна
  • Бородулин Владимир Борисович
RU2561294C1
Способ лечения злокачественных новообразований в эксперименте 2016
  • Кит Олег Иванович
  • Шихлярова Алла Ивановна
  • Жукова Галина Витальевна
  • Бартенева Татьяна Альбертовна
  • Брагина Марина Игоревна
  • Ширнина Елена Алексеевна
  • Куркина Татьяна Анатольевна
RU2638448C1
СПОСОБ ЛЕЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ 2001
  • Светицкий П.В.
  • Порошенко А.Б.
  • Соловьева М.А.
  • Пустовая И.В.
RU2211714C2
СПОСОБ ПОВЫШЕНИЯ БЕССОБЫТИЙНОЙ ПРОДОЛЖИТЕЛЬНОСТИ ЖИЗНИ ОПУХОЛЕНОСИТЕЛЕЙ В ЭКСПЕРИМЕНТЕ 2009
  • Сидоренко Юрий Сергеевич
  • Златник Елена Юрьевна
  • Передреева Лариса Викторовна
  • Бородулин Владимир Борисович
  • Жорникова Наталья Александровна
RU2417942C1
СПОСОБ ЛЕЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ В ЭКСПЕРИМЕНТЕ 2004
  • Шейко Елена Александровна
  • Шихлярова Алла Ивановна
  • Жукова Галина Витальевна
  • Пшеничная Наталья Константиновна
  • Куркина Татьяна Анатольевна
  • Капкина Наталья Николаевна
  • Поушкова Светлана Валерьевна
  • Алаухова Анна Анатольевна
  • Мащенко Наталья Михайловна
  • Торпуджян Изабелла Саркисовна
RU2281795C2
СПОСОБ ИНДУКЦИИ ЦИТОТОКСИЧЕСКОГО ДЕЙСТВИЯ НА ОПУХОЛЕВЫЕ КЛЕТКИ 2011
  • Златник Елена Юрьевна
  • Светицкий Павел Викторович
  • Аржановская Светлана Владимировна
  • Закора Галина Ивановна
  • Светицкий Андрей Павлович
RU2468447C1
СПОСОБ ЛЕЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ В ЭКСПЕРИМЕНТЕ 2003
  • Жукова Г.В.
  • Гаркави Л.Х.
  • Шихлярова А.И.
  • Евстратова О.Ф.
  • Кондратов А.В.
  • Костровицкий Ю.В.
  • Пшеничная Н.К.
  • Поушкова С.В.
  • Шейко Е.А.
  • Мордань Т.А.
  • Жукова Т.В.
RU2261733C2
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ НАНОДИСПЕРСНОЙ МЕДИ НА РОСТ ОПУХОЛЕЙ В ЭКСПЕРИМЕНТЕ 2009
  • Сидоренко Юрий Сергеевич
  • Горошинская Ирина Александровна
  • Качесова Полина Сергеевна
  • Жукова Галина Витальевна
  • Евстратова Ольга Федоровна
  • Бородулин Владимир Борисович
RU2417453C1
МОНОЭФИР САХАРОЗЫ И КАРАТАВИКОВОЙ КИСЛОТЫ, ОБЛАДАЮЩИЙ ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ 1987
  • Артамонов А.Ф.
  • Никонов Г.К.
  • Бокаева С.С.
  • Едыгенова А.К.
  • Барамысова Г.Т.
SU1515652A1
СРЕДСТВО ДЛЯ ИНГИБИРОВАНИЯ РОСТА ОПУХОЛИ И СПОСОБ ИНГИБИРОВАНИЯ РОСТА ОПУХОЛИ В ЭКСПЕРИМЕНТЕ 2006
  • Московцева Ольга Михайловна
  • Щербатюк Татьяна Григорьевна
RU2320334C1

Реферат патента 2014 года СПОСОБ ПОДАВЛЕНИЯ ОПУХОЛЕВОГО РОСТА В ЭКСПЕРИМЕНТЕ

Изобретение относится к медицине, а именно к экспериментальным исследованиям в онкологии, и может быть использовано для оценки противоопухолевого действия наночастиц (НЧ) металлов. В перевиваемую лимфосаркому Плисса интратуморально вводят взвесь наночастиц железа в количестве 1,25 мг/кг. Затем проводят паратуморальное введение метотрексата в дозе 0,2 мг/кг. После этого осуществляют локальный нагрев опухоли до температуры 42-43°С электромагнитным излучателем УВЧ-диапазона с частотой 12,7 МГц в течение 10 минут. Всего проводят 5 таких сеансов с интервалом между воздействиями 48 часов. Затем определяют индекс эффективности, процент случаев полной регрессии и процент торможения роста лимфосаркомы Плисса. Способ обеспечивает усиление противоопухолевого действия термохимиотерапии без повышения токсичности действия на организм. 2 табл.

Формула изобретения RU 2 506 971 C1

Способ подавления опухолевого роста в эксперименте, включающий сочетанное действие на опухоль металлических наночастиц и гипертермии, отличающийся тем, что в перевиваемую лимфосаркому Плисса интратуморально вводят взвесь наночастиц железа в количестве 1,25 мг/кг, затем паратуморально вводят метотрексат в дозе 0,2 мг/кг и осуществляют локальный нагрев опухоли 42-43°С электромагнитным излучателем УВЧ-диапазона с частой 12,7 МГц в течение 10 мин, проводят 5 таких сеансов с интервалом между воздействиями 48 ч.

Документы, цитированные в отчете о поиске Патент 2014 года RU2506971C1

ЧИССОВ В.И
и др
Импульсная лазерная гипертермия с наночастицами в качестве термосенсибилизаторов - новый потенциальный метод противоопухолевой терапии
Российский онкологический журнал, 2010, - № 6, с.32-36
СПОСОБ ИНДУКЦИИ АНТИПРОЛИФЕРАТИВНОГО, ЦИТОТОКСИЧЕСКОГО ЭФФЕКТА В ОПУХОЛЕВЫХ КЛЕТКАХ ЛИНЕЙНЫХ И СВЕЖЕВЫДЕЛЕННЫХ КУЛЬТУР 2008
  • Златник Елена Юрьевна
  • Закора Галина Ивановна
  • Передреева Лариса Викторовна
  • Горошинская Ирина Александровна
RU2392668C1
СПОСОБ ЛОКАЛЬНОГО РАЗРУШЕНИЯ ОПУХОЛЕЙ С ПОМОЩЬЮ СВЧ-НАГРЕВА МАГНИТНЫХ НАНОЧАСТИЦ 2008
  • Акчурин Гариф Газизович
  • Акчурин Георгий Гарифович
  • Горин Дмитрий Александрович
  • Портнов Сергей Алексеевич
RU2382659C1
СПОСОБ ЛЕЧЕНИЯ ОПУХОЛЕЙ ЛАЗЕРНОЙ ГИПЕРТЕРМИЕЙ 2009
  • Сироткина Марина Александровна
  • Загайнова Елена Вадимовна
  • Ширманова Марина Вадимовна
  • Елагин Вадим Вячеславович
  • Бугрова Марина Леонидовна
  • Жеглов Александр Викторович
RU2425701C1
US 7945335 B2, 17.05.2011
KOHLER N,

RU 2 506 971 C1

Авторы

Кит Олег Иванович

Горошинская Ирина Александровна

Качесова Полина Сергеевна

Светицкий Павел Викторович

Светицкий Андрей Павлович

Даты

2014-02-20Публикация

2012-09-21Подача