СПОСОБ ИНДУКЦИОННОГО УПРОЧНЕНИЯ И ВОССТАНОВЛЕНИЯ ДЕТАЛЕЙ Российский патент 2014 года по МПК B22D19/10 B23P6/00 

Описание патента на изобретение RU2507027C1

Изобретение относится к машиностроению, в частности к индукционно-металлургическому способу упрочнения и восстановления стальных и чугунных деталей в соответствии с характером их износа, работающих в условиях абразивного изнашивания и при ударных нагрузках, и может быть использовано при производстве упрочненных деталей машин и инструмента в машиностроительной, металлургической, химической, строительной, и других отраслях промышленности, обладающих повышенным ресурсом работы.

Известен способ индукционного упрочнения и восстановления стальных деталей, включающий изготовление на восстанавливаемой поверхности детали углублений путем приварки пробковым швом стальных планок перпендикулярно направлению потока абразивной массы, воздействующей на деталь в процессе работы, заполнение полученных углублений тонким слоем легкоплавкой шихты, содержащей ПГ-Ср2 и переплав (Na2B4O7+H3BO3) при следующем соотношении компонентов, мас.%: ПГ-Ср2 - 80, переплав (Na2B4O7+H3BO3) - 20, толщиной до 1 мм, заполнение углублений металлокерамической крупкой, в качестве которой используют сплавы ВК или ТК грануляции 2,5-4 мм, и нанесение на полученную поверхность слоя порошковой шихты толщиной 3-4 мм, содержащей износостойкий сплав из ПГ-УСЧ35, ПГ-СР2 и флюса П1,5М при следующем соотношении компонентов, мас.%: ПГ-УСЧ35 - 75, ПГ-СР2 - 10, флюс П1,5М - 15, образующей матрицу, с последующим расплавлением ее индуктором (патент RU 2228242, МПК7 B23K 13/01, B22D 19/00).

Недостатками вышеописанного способа упрочнения и восстановления стальных деталей являются слабая адгезия наплавленного слоя металла, обусловленная необходимостью создания искусственных неровностей рельефа на упрочняемой поверхности, низкая износостойкость деталей с упрочненным слоем, полученным по этому способу (см. таблицу, № п/п 1, 2).

Наиболее близким к предлагаемому изобретению по технической сущности (прототипом) является способ индукционной наплавки стальных деталей, заключающийся в том, что предварительно поверхность детали насыщают вольфрамом и кобальтом на глубину 0,1-0,3 мм путем электроискрового легирования с использованием наплавочного оборудования, затем на поверхность детали наносят, а именно насыпают, шихту, содержащую твердый сплав ПС-14-80 и флюс при следующем соотношении компонентов, мас.%: твердый сплав ПС-14-80 - 85, флюс - 15, с толщиной слоя 3 мм. Далее нагревают деталь в индукторе токами высокой частоты на средних режимах с использованием высокочастотного генератора (патент RU 2338625, МПК B22D 19/00, B23K 13/01, B23H 9/00 (2006.01)).

Недостатками вышеописанного способа являются низкая технологичность вследствие использования дополнительной операции насыщения вольфрамом и кобальтом путем электроискрового легирования, пониженная стойкость, а именно износостойкость, деталей с наплавленным слоем, полученным по этому способу (см. таблицу, № п/п 3, 4), повышенные затраты вследствие необходимости применения дорогостоящих вольфрама и кобальта при условии их нанесения путем электроискрового легирования и вследствие необходимости применения дополнительного наплавочного оборудования.

Задачей изобретения является повышение технологичности процесса, стойкости, а именно износостойкости, деталей с наплавленным слоем, полученных по предложенному способу, а также экономичности.

Поставленная задача решается тем, что в способе индукционного упрочнения и восстановления деталей, включающем нанесение на поверхность детали шихты и нагрев токами высокой частоты, согласно изобретению на поверхность детали наносят шихту, содержащую карбид бора, фторид натрия, буру, сормайтовую крупку, толщиной слоя 0,5-5,0 мм при следующем соотношении компонентов, мас.%:

Карбид бора 25-35 Фторид натрия 1-3 Бура 9-12 Сормайтовая крупка 50-65

нагрев токами высокой частоты производят при удельной мощности 1,5-3,0 кВт на 1 см2 поверхности детали с частотой 40-80 кГц в течение 1,5-5 минут до оплавления поверхности нанесенной шихты и образования на поверхности наплавленного слоя стеклообразной шлаковой корочки, после чего деталь с наплавленным слоем охлаждают на воздухе до температуры ниже 200°C и удаляют стеклообразную шлаковую корочку с поверхности наплавленного слоя.

Повышение технологичности процесса достигается путем нагрева детали токами высокой частоты при удельной мощности 1,5-3,0 кВт на 1 см2 поверхности детали с частотой 40-80 кГц в течение 1,5-5 минут до оплавления поверхности нанесенной на деталь шихты, содержащей карбид бора, фторид натрия, буру, сормайтовую крупку, и образования на поверхности наплавленного слоя стеклообразной шлаковой корочки при отсутствии дополнительной операции электроискрового легирования.

Повышение износостойкости деталей, наплавленных посредством предложенного способа, обеспечивается частичным растворением в поверхностном слое наплавляемой детали компонентов шихты с образованием равнопрочной с основным металлом границы сплавления, а также легированием наплавленного материала бором с образованием боридной эвтектики, переходящей в диффузионный боридный слой на поверхности наплавленного материала и имеющей высокую поверхностную твердость и износостойкость.

Повышение экономичности процесса достигается путем получения на деталях наплавленных слоев, более чем в 2,5 раза превосходящих по механическим свойствам покрытия на готовых изделиях, полученных в соответствии со способом, выбранным в качестве прототипа, при отказе от электроискрового легирования вольфрамом и кобальтом и от дополнительного наплавочного оборудования.

Нанесение на литейную оснастку для получения детали шихты толщиной слоя 0,5-5,0 мм является оптимальным, так как при нанесении шихты толщиной слоя менее 0,5 мм формирования покрытия не наблюдается либо наплавленный слой получается «пятнистым», а при нанесении шихты толщиной слоя более 5,0 мм снижается экономичность процесса упрочнения и восстановления деталей вследствие перерасхода наплавочной шихты из-за ее неравномерного плавления и, кроме того, наблюдается формирование покрытия повышенной толщины, имеющего крайне неравномерный рельеф поверхности.

Содержание в шихте карбида бора в количестве 25-35 мас.% оптимально по причине того, что при его содержании ниже чем 25 мас.% не образуется диффузионный слой на поверхности наплавленного слоя, кроме того, образование боридной эвтектики, обладающей более высокими механическими и эксплуатационными характеристиками, также затруднено, а содержание карбида бора в шихте более 35 мас.% приводит к образованию в поверхностном слое хрупких составляющих, выкрашивающихся в процессе эксплуатации, что приводит к снижению ресурса работы наплавленной детали и ее катастрофическому износу.

Содержание в шихте фторида натрия в количестве 1-3 мас.% оптимально по причине того, что при содержании фторида натрия, меньшем чем 1 мас.%, происходит недостаточно полное растворение боридных соединений в поверхности детали и наплавленном слое, что приводит к получению наплавленных слоев, обладающих малым ресурсом работы, а при увеличении в шихте содержания фторида натрия выше чем 3 мас.% возможно окисление составляющих наплавленного слоя, что приводит к ухудшению геометрической точности изготовленной детали, неравнопрочному соединению и низкой износостойкости наплавленного изделия.

Содержание в шихте сормайтовой крупки в количестве 50-65 мас.% оптимально по причине того, что при содержании сормайтовой крупки, меньшем чем 50 мас.%, формируется упрочненный слой меньшей толщины, обладающий высокой хрупкостью, что может приводить к самоскалыванию наплавленного покрытия уже в процессе охлаждения. При содержании сормайтовой крупки, большем чем 65 мас.%, вследствие меньшего содержания флюса, формирования сплошной стеклообразной корки на наплавляемом покрытии не происходит, что приводит к местному окислению покрытия и угару легирующих элементов.

Нагрев токами высокой частоты производят при удельной мощности 1,5-3,0 кВт на 1 см2 поверхности детали с частотой 40-80 кГц, что является оптимальным, так как вводимая мощность при температуре фазовых превращений пропорциональна частоте. При мощности, меньшей чем 1,5 кВт на 1 см2, прогрев наплавляемой шихты и поверхности восстанавливаемой детали займет длительное время, кроме того, возрастает риск частичного непроплавления шихты. При частоте менее 40 кГц возрастает время нагрева при температурах выше 800°C, в результате чего возможно неполное сплавление наплавляемого покрытия и основного материала изделия, что может привести к последующему отслаиванию упрочненного слоя. При частоте более 80 кГц происходит быстрый нагрев шихты с последующим ее плавлением, тогда как поверхность изделия не успевает прогреться до подплавления - в результате чего происходит «сползание» наплавленного металла. При мощности нагрева более 3 кВт на 1 см2 происходит быстрый разогрев, в результате чего возможен перегрев как наплавляемого материала, так и поверхности изделия, в результате чего формируется неблагоприятная микроструктура, обладающая низкими показателями стойкости.

Время нагрева токами высокой частоты, составляющее 1,5-5 минут, является оптимальным, так как при времени нагрева менее 1,5 минут не удается обеспечить равномерное расплавление шихты и сваривание ее с основой, при времени нагрева более 5 минут велик риск пережога как наплавляемого металла, так и поверхности изделия, что чревато наличием неметаллических включений на границе сплавления и слабой адгезией наплавленного слоя к восстанавливаемой поверхности.

Температура охлаждения детали с наплавленным слоем на воздухе ниже 200°C является оптимальной, так как при охлаждении на воздухе образуется оптимальная микроструктура наплавленного слоя. При температуре ниже 200°C все процессы формирования микроструктуры заканчиваются, также при температуре ниже 200°C стеклообразная шлаковая корка снимается без приложения усилий, тогда как при температуре выше 200°C для снятия шлаковой корки требуется затрачивать значительные усилия.

Предложенное изобретение поясняется таблицей, в которой приведены результаты испытаний на стойкость ножей для измельчения полипропиленовых корпусов аккумуляторных батарей, изготовленных из стали У10А.

Способ индукционного упрочнения и восстановления деталей осуществляется следующим образом. Шихту, содержащую карбид бора, фторид натрия, буру, сормайтовую крупку при следующем соотношении компонентов, мас.%: карбид бора 25-35; фторид натрия 1-3, бура 9-12, сормайтовая крупка 50-65, наносят на поверхность наплавляемой детали слоем от 0,5 до 5,0 мм. После этого деталь нагревают в индукторе токами высокой частоты при удельной мощности 1,5-3,0 кВт на 1 см2 поверхности детали с частотой 40-80 кГц в течение 1,5-5 минут до оплавления поверхности нанесенной шихты и образования на поверхности наплавленного слоя стеклообразной шлаковой корочки. Затем деталь с наплавленным слоем охлаждают на воздухе до температуры ниже 200°C и удаляют стеклообразную шлаковую корочку с поверхности наплавленного слоя.

Изобретение иллюстрируется следующим примером.

Подвергали упрочнению деталь из стали У10А - нож для измельчения полипропиленовых корпусов аккумуляторных батарей, предназначенный для утилизации отработанных аккумуляторных батарей. Предварительно шихту, содержащую карбид бора, фторид натрия, буру, сормайтовую крупку (см. таблицу, № п/п 5-20), наносили на поверхность наплавляемой детали слоем толщиной 3 мм, после чего нагревали в индукторе токами высокой частоты при удельной мощности 2,0 кВт на 1 см2 поверхности детали с частотой 60 кГц в течение 4 минут до оплавления поверхности нанесенной шихты и образования на поверхности наплавленного слоя стеклообразной шлаковой корочки. По окончании нагрева деталь с наплавленным слоем охлаждали на воздухе до температуры 190°C и удаляли с поверхности наплавленного слоя стеклообразную шлаковую корочку.

При этом на поверхности наплавленного слоя был получен диффузионный слой толщиной 0,01-0,015 мкм с микротвердостью 28000-32000 МПа, под которым находился наплавленный слой толщиной 1,5-2 мм, содержащий карбиды и карбобориды железа и хрома, а также боридную эвтектику сложного состава с микротвердостью 16000-20000 МПа (см. таблицу, № п/п 6-10, 16, 19, 20). Износостойкость ножа определяли по массе измельченных полипропиленовых корпусов аккумуляторных батарей.

Также осуществляли процесс упрочнения ножа в соответствии со способом индукционного упрочнения и восстановления стальных деталей, а именно ножа, выбранным в качестве аналога (см. таблицу, № п/п 1, 2), способом индукционной наплавки стальных деталей, выбранным в качестве прототипа (см. таблицу, № п/п 3, 4), и способом изготовления серийного ножа из стали У10А (см. таблицу, №21), которые также испытывали при измельчении полипропиленовых корпусов аккумуляторных батарей.

Как следует из приведенных в таблице данных, при наплавке деталей шихтой с содержанием компонентов за заявленными пределами стойкость упрочненных слоев снижается и происходит искажение размеров упрочненного изделия, приводящее к браку (см. таблицу, № п/п 5, 11, 13, 14) либо к формированию наплавленного слоя с низкими эксплуатационными качествами (см. таблицу, № п/п 12). Стойкость, а именно износостойкость, изготовленного в соответствии с предложенным изобретением ножа возросла в среднем в 4 раза по сравнению со стойкостью ножа, изготовленного в соответствии с прототипом.

Таким образом, использование предложенного изобретения позволяет увеличить износостойкость деталей, упрочненных и восстановленных в соответствии с предложенным способом, повысить технологичность и экономичность процесса индукционного упрочнения и восстановления деталей из чугунов и сталей. Заявленный способ может быть использован на любом предприятии, имеющем оборудование для термической обработки с применением токов высокой частоты, для производства деталей машин и инструмента, обладающих повышенным по сравнению с серийным в 2-10 раз ресурсом работы.

Таблица Результаты испытаний на стойкость ножей для измельчения полипропиленовых корпусов аккумуляторных батарей, изготовленных из стали У10А № п/п Составы шихты, нанесенной на поверхности ножей Стойкость, т* B4C NaF Na2B4O7 Сормайтовая крупка Флюс АНАЛОГ 1 - - - 95 5 9,5 2 - - - 98 2 9,8 ПРОТОТИП 3 - - - 80 20 12 4 - - - 86 14 16 ИЗОБРЕТЕНИЕ 5 24 2 9 65 - 9 6 29 2 9 60 - 37 7 25 2 11 62 - 41 8 30 2 12 56 - 55 9 35 2 10 53 - 58 10 37 3 10 50 - 46 11 33 4 11 52 - 32 12 30 1 10 59 - 11 13 32 0,5 10,5 57 - - 14 30 2 7 61 - 13 15 30 2 13 55 - 9 16 36 3 12 49 - 25 17 24 1 9 66 - - 18 37 2 8 53 - 8,6 19 33 1 10 56 - 52 20 25 1,5 8,5 65 - 38 21 Стандартный нож из стали У10А 8,5 * стойкость определялась по массе измельченного полипропиленового корпуса, т

Режим работы ножей для измельчения полипропиленовых корпусов аккумуляторных батарей, изготовленных из стали У10А: абразивный износ, обусловленный наличием остатков активной пасты, в сочетании с коррозионным износом, обусловленным наличием сернокислотного электролита.

Похожие патенты RU2507027C1

название год авторы номер документа
СПОСОБ ИНДУКЦИОННОГО УПРОЧНЕНИЯ ПОЧВООБРАБАТЫВАЮЩЕГО РАБОЧЕГО ОРГАНА 2014
  • Гурьев Алексей Михайлович
  • Гурьев Михаил Алексеевич
  • Гурьева Светлана Адольфовна
  • Иванов Сергей Геннадьевич
  • Иванова Татьяна Геннадьевна
  • Власова Ольга Алексеевна
  • Иванова Светлана Александровна
  • Зобнев Виктор Викторович
RU2582840C1
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ СТАЛЬНОЙ ДЕТАЛИ, СОДЕРЖАЩЕЙ ГЛУХИЕ ПОЛОСТИ 2014
  • Иванайский Виктор Васильевич
  • Ишков Алексей Владимирович
  • Кривочуров Николай Тихонович
  • Коваль Данил Валерьевич
  • Соколов Андрей Викторович
RU2569872C1
Шихта для индукционной наплавки износостойкого сплава 2020
  • Ишков Алексей Владимирович
  • Кривочуров Николай Тихонович
  • Иванайский Виктор Васильевич
  • Иванайский Евгений Анатольевич
  • Полковникова Марина Викторовна
  • Аулов Вячеслав Федорович
RU2755913C1
СПОСОБ УПРОЧНЕНИЯ СТАЛЬНЫХ ДЕТАЛЕЙ 2014
  • Гурьев Алексей Михайлович
  • Гурьев Михаил Алексеевич
  • Гурьева Светлана Адольфовна
  • Иванов Сергей Геннадьевич
  • Иванова Татьяна Геннадьевна
  • Бильтриков Николай Георгиевич
RU2556805C1
СПОСОБ ИЗГОТОВЛЕНИЯ УПРОЧНЕННЫХ СТАЛЬНЫХ И ЧУГУННЫХ ДЕТАЛЕЙ 2012
  • Гурьев Михаил Алексеевич
  • Гурьев Алексей Михайлович
  • Иванов Сергей Геннадьевич
  • Фильчаков Дмитрий Сергеевич
RU2508959C2
ШИХТА ДЛЯ ИНДУКЦИОННОЙ НАПЛАВКИ 2014
  • Аулов Вячеслав Федорович
  • Ишков Алексей Владимирович
  • Иванайский Виктор Васильевич
  • Кривочуров Николай Тихонович
  • Коваль Данил Валерьевич
  • Соколов Андрей Викторович
  • Соловьев Сергей Александрович
RU2581698C1
Способ упрочнения лезвийной поверхности детали 2016
  • Иванайский Виктор Васильевич
  • Ишков Алексей Владимирович
  • Кривочуров Николай Тихонович
  • Бедарев Михаил Викторович
  • Иванайский Евгений Анатольевич
RU2640515C1
ПОРОШКОВАЯ ТЕРМОРЕАГИРУЮЩАЯ ШИХТА ДЛЯ ИНДУКЦИОННОЙ НАПЛАВКИ ТВЕРДОГО СПЛАВА 2015
  • Иванайский Виктор Васильевич
  • Ишков Алексей Владимирович
  • Кривочуров Николай Тихонович
  • Коваль Данил Валерьевич
  • Соколов Андрей Викторович
  • Аулов Вячеслав Федорович
  • Соловьев Сергей Александрович
RU2637736C2
СПОСОБ ДИФФУЗИОННОГО УПРОЧНЕНИЯ СТАЛЬНЫХ ДЕТАЛЕЙ 2014
  • Гурьев Алексей Михайлович
  • Гурьев Михаил Алексеевич
  • Гурьева Светлана Адольфовна
  • Иванов Сергей Геннадьевич
  • Иванова Светлана Александровна
  • Власова Ольга Алексеевна
RU2589954C1
СПОСОБ ИНДУКЦИОННОЙ НАПЛАВКИ ВЫСОКОЛЕГИРОВАННЫХ ХРОМИСТЫХ ЧУГУНОВ 2014
  • Аулов Вячеслав Федорович
  • Иванайский Виктор Васильевич
  • Ишков Алексей Владимирович
  • Кривочуров Николай Тихонович
  • Лялякин Валентин Павлович
RU2568036C2

Реферат патента 2014 года СПОСОБ ИНДУКЦИОННОГО УПРОЧНЕНИЯ И ВОССТАНОВЛЕНИЯ ДЕТАЛЕЙ

Изобретение относится к машиностроительной промышленности. На поверхность детали наносят слой шихты, содержащей, мас.%: карбид бора 25-35, фторид натрия 1-3, буру 9-12, сормайтовую крупку 50-65, толщиной от 0,5 до 5,0 мм. Деталь нагревают в индукторе токами высокой частоты при удельной мощности 1,5-3,0 кВт на 1 см2 поверхности детали с частотой 40-80 кГц в течение 1,5-5 минут до оплавления поверхности слоя шихты. На поверхности наплавленного слоя образуется стеклообразная шлаковая корочка. По окончании нагрева деталь с наплавленным слоем охлаждают на воздухе до температуры ниже 200°C и удаляют стеклообразную шлаковую корочку. Обеспечивается повышение износостойкости детали. 1 табл., 1 пр.

Формула изобретения RU 2 507 027 C1

Способ индукционного упрочнения и восстановления деталей, включающий нанесение на поверхность детали шихты и нагрев токами высокой частоты, отличающийся тем, что на поверхность детали наносят слой шихты, содержащей карбид бора, фторид натрия, буру, сормайтовую крупку, толщиной 0,5-5,0 мм, при следующем соотношении компонентов, мас.%:
Карбид бора 25-35 Фторид натрия 1-3 Бура 9-12 Сормайтовая крупка 50-65


нагрев токами высокой частоты производят при удельной мощности 1,5-3,0 кВт на 1 см2 поверхности детали с частотой 40-80 кГц в течение 1,5-5 минут до оплавления поверхности слоя шихты и с образованием на поверхности детали наплавленного слоя стеклообразной шлаковой корочки, после чего деталь с наплавленным слоем охлаждают на воздухе до температуры ниже 200°C и удаляют стеклообразную шлаковую корочку с поверхности наплавленного слоя.

Документы, цитированные в отчете о поиске Патент 2014 года RU2507027C1

СПОСОБ ИНДУКЦИОННОЙ НАПЛАВКИ СТАЛЬНОЙ ДЕТАЛИ 2007
  • Иванайский Виктор Васильевич
  • Кривочуров Николай Тихонович
  • Иванайский Евгений Анатольевич
  • Коваль Андрей Владимирович
RU2338625C1
RU 2058866 C1, 27.04.1996
МАШИНА ПО ПРОИЗВОДСТВУ ЛЕНТОЧНЫХ ГИБКИХ МАТЕРИАЛОВ 1991
  • Титов М.А.
  • Галюжин С.Д.
  • Мрочек В.И.
  • Приходько В.В.
  • Антипенко Г.Л.
RU2019614C1
Способ обжига магнезита и доломита 1939
  • Френкель А.С.
SU57267A1

RU 2 507 027 C1

Авторы

Иванов Сергей Геннадьевич

Гурьев Алексей Михайлович

Гармаева Ирина Анатольевна

Гурьев Михаил Алексеевич

Малькова Наталья Юрьевна

Иванова Светлана Александровна

Даты

2014-02-20Публикация

2012-09-21Подача