СПОСОБ УПРАВЛЕНИЯ СКОРОСТЬЮ ПОЛЕТА РАКЕТЫ НОРМАЛЬНОЙ АЭРОДИНАМИЧЕСКОЙ СХЕМЫ С Х-ОБРАЗНО РАСПОЛОЖЕННЫМИ РУЛЯМИ Российский патент 2014 года по МПК F42B15/01 

Описание патента на изобретение RU2510485C2

Предлагаемый способ управления относится к области управления движением воздушных судов, в частности к области управления полета ракет нормальной аэродинамической схемы с Х-образно расположенными рулями.

Известен способ управления скоростью воздушного судна (ВС) отклонением тормозных щитков [Ништ М.И. Аэродинамика боевых летательных аппаратов / М.И. Ништ - М.: ВВИА имени профессора Н.Е. Жуковского, 1994 г., С.258] - поверхностями управления, которые отклоняют для снижения его воздушной скорости. При превышении путевой скорости ВС выше заданной скорости на величину ΔV, тормозные щитки отклоняют на угол ΔδТЩ пропорциональный величине этого рассогласования скорости ΔV. Воздушный поток оказывают тормозящее воздействие на данные отклоненные управляющие поверхности и снижает воздушную скорость всего воздушного судна. В целом, указанные управляющие поверхности обеспечивают снижение продольной скорости самолета, но не все ВС имеют данные управляющие поверхности. Для управления скоростью воздушного судна при их отсутствии необходим монтаж дополнительных приводов и вычислительных устройств, обеспечивающих их работу.

Известен способ автоматического управления скоростью воздушного судна путем изменения тяги двигателя. При отклонении путевой скорости ВС от скорости заданной системой управления ВС на величину ΔV но сигналам данной системы управления тяга двигателя изменяется на величину ΔP определяемую пропорционально величине рассогласования скорости ΔV. В результате изменения тяги двигателя ВС возникает ускорение, направленное на изменение скорости ВС в сторону уменьшения этого рассогласования [Красовский А.Л. Системы автоматического управления летательных аппаратов / А.А. Красовский, Ю.А. Вавилов, А.И. Сучков. - М.: Наука, 1986 г., С.309-315]. Управление скоростью ВС путем изменения тяги двигателя требует изменения его конструкции двигателя, удорожания конструкции, увеличения веса ВС.

Известен способ управления движением ракет при помощи X-образно расположенных дифференциально отклоняемых аэродинамических рулей [Лебедев А.А. Динамика полета беспилотных летательных аппаратов/ Лебедев А.А., Чернобровкин Л.C./ Учебное пособие для вузов. Изд. 2-е, перераб. и доп. М:. Машиностроение, 1973, 616 с.]. После пуска ракеты для наведения ракеты на подвижную цель при отклонении ракеты от линии визирования «ракета-цель» с целью его устранения системой наведения ракеты формируются сигналы на рулевые привода для отклонения X-образно расположенных аэродинамических рулевых поверхностей следующим образом. Первоначально формируют три сигнала по каналам управления путем:

- измерения текущего значения угла наклона траектории θ, определении необходимого для наведения на цель ракеты значения угла наклона траектории θзад, определении сигнала рассогласования по углу наклона траектории Δθзад, и путем усиления этого сигнала на коэффициент K δ ˙ В H , определяют сигнал скорости отклонения рулей по каналу высоты δ ˙ В ;

- измерения текущего значения угла пути ψ, определения заданное, необходимое для наведения на цель ракеты значение угла пути ψзад, определении сигнала рассогласования по углу пути Δψзад, от заданного значения и, усиливая этот сигнал, формируют сигнал скорости отклонения рулей по каналу направления δ ˙ Н ;

- определения текущего значения угла крена γ, определяют заданное, необходимое для наведения на цель ракеты значение угла крена γзад, определении сигнала рассогласования по углу крена Δγзад, от заданного значения и, усиливая сигнал на коэффициент управления K δ ˙ Э Δ γ , формируют сигнал скорости отклонения рулей по каналу элеронов δ ˙ Э , формируют сигналы управления каждого из четырех Х-образно расположенных рулей δ 1 с у м м , δ 2 с у м м , δ 3 с у м м , δ 4 с у м м путем суммирования сигналов управления δВ, δН, δЭ между собой со знаками:

- сигнал канала высоты δВ, синхронно вверх - при отрицательных рассогласованиях по углу наклона траектории Δθзад и синхронно вниз - при положительных рассогласованиях по углу наклона траектории Δθзад;

- сигнал канала направления δН, при положительных рассогласованиях угла пути Δψзад - синхронно влево и при отрицательных рассогласованиях угла пути Δψзад - синхронно вправо;

- сигнал канала элеронов δЭ, синхронно в направлении совпадающем с направлением рассогласования по крену Δγзад, после чего приводят все сигналы δ 1 с у м м , δ 2 с у м м , δ 3 с у м м , δ 4 с у м м к общему уровню путем усиления, каждого сигнала на коэффициент 1 3 подают на соответствующие рулевые привода Х-образно расположенных рулей. Однако для обеспечения гарантированного наведения на цель такие комбинации отклонения рулей не обеспечивают управления ракетой из-за отсутствия управления воздушной скоростью ракеты в случае избыточной или недостаточной для наведения на цель воздушной скорости ракеты.

Рассмотренный последним способ управления движением ракеты является наиболее близким, по совокупности существенных признаков к заявленному и принимается за прототип заявленного способа управления продольной скоростью ракеты.

Задачей, на решение которой направлен заявленный способ управления полета ракеты, является определение таких отклонений ее X-образно расположенных рулей, с помощью которых возможно управление скоростью ракеты, но которые не повлияют на движение ракеты по каналам высоты, направления и элеронов.

Технический результат, который обеспечивается заявленным способом управления полетом ракеты, заключается в том, что при синхронном отклонении рулей в данной комбинации оказывается эффективное управляющее воздействие на значение продольной скорости ракеты и не наблюдается изменения перемещения ракеты и изменения ее углового положения по каналам высоты, направления и элеронов.

Указанный технический результат способа управления воздушной скоростью ракеты обеспечивается тем, что, при увеличении воздушной скорости воздушного судна выше заданной вычислителем системы управления все рулевые поверхности синхронно отклоняются на увеличение угла своего отклонения пропорционально величине рассогласования воздушной скорости.

Сущность заявленного способа заключается в том, что отклонение любой рулевой поверхности в сторону увеличения угла отклонения навстречу воздушному потоку т.е. на увеличение ее угла атаки приводит к пропорциональному увеличению силы лобового сопротивления.

Кроме того в результате синхронного отклонения попарно навстречу друг к другу верхних и нижних рулей в поперечной плоскости ракеты происходит по парная компенсация моментов рулей, что приводит к тому, что практически не оказывается влияние на управление в каналах высоты, направления и элеронов, но значительно увеличивается сила лобового сопротивления.

Аналогичный эффект наблюдается в результате синхронного отклонения при отклонении из нулевого положения рулей в обратном направлении - попарно навстречу друг к другу правых и левых рулей.

Возникшее увеличение силы лобового сопротивления на всех X-образных рулях приводит к увеличению силы лобового сопротивления всего воздушного судна в целом - уменьшается воздушная скорость ракеты. Эффективность такого управления достаточно высока - отклонение всех X-образно расположенных рулей в описанной комбинации существующих ракет на 30° приводит к увеличению силы лобового сопротивления до 30%.

В целом, при появлении рассогласования по любому из каналов управления система управления формирует сигнал отклонения рулей направленный на устранение этого рассогласования.

Таким для управление полетом ракеты четырьмя Х-образно расположенными рулями по сигналам четырех сигналов управления по каждому каналу выделяется свой ограниченный диапазон отклонения рулей. Это организуется путем ограничения сигналов по каждому из каналов управления. Например, при полном отклонении рулей в 40 градусов сигнал по каждому из четырех каналов не должен превысить отклонение руля в 10 градусов.

Таким образом, максимальное суммарное отклонение рулей по каналам в одном направлении приведет к выходу одного из рулей в крайнюю точку отклонения, ограниченную упором. При таком выходе на упор подача сигналов прекратится, поскольку будут выбраны диапазоны отклонения рулей по всем каналам управления.

В целом, скорость движения рулей для каждого из каналов задается пропорциональной величине рассогласования по данному каналу, что обеспечивается наличием обратной связи для данного канала.

Однако в некоторых случаях синхронные отклонение рулей в заявленной комбинации рулей друг другу навстречу может оказывать влияние на изменение перемещений ракеты в других каналах управления ракетой. Это происходит в следующих условиях:

- при значительных углах атаки в комбинации, когда соседние рули сверху и снизу попарно синхронно отклоняются навстречу друг другу.

- при значительных углах скольжения в комбинации, когда соседние рули с одной стороны попарно синхронно отклоняются навстречу друг другу.

Поэтому в случае превышения значения угла атаки α над значением угла скольжения β лучше использовать комбинацию отклонения соседних рулей с каждой стороны синхронно попарно навстречу друг другу; а в случае превышения значения угла скольжения β над значением угла атаки α лучше использовать комбинацию отклонения рулей сверху и рулей снизу попарно синхронно навстречу друг другу,

При отрицательном рассогласовании воздушной скорости Vа зад рули уже отклонены на торможение ракеты по сигналу в канале δ ˙ П С для увеличения воздушной скорости рулевые поверхности в этой же комбинации необходимо синхронно убрать из потока в нулевое положение т.е по сигналу в канале δ ˙ П С изменить их положение на уменьшение угла отклонения по отношению к направлению воздушного потока.

Область применения заявленного способа управления на высоте до 13000 метров в условиях достаточной плотности воздуха для аэродинамического управления движением ракеты.

На фигуре 1 изображен вид на отклоненные рулевые поверхности с хвоста ракеты при угле атаки α, большем угла скольжения β. На фигуре 1 цифрами 1, 2, 3, 4 обозначены номера рулей. На фигуре показано, что для уменьшения продольной скорости ракеты рули попарно с одной стороны отклоняются навстречу друг другу (1 навстречу 2 и 3 навстречу 4).

На фигуре 2 изображена функциональная схема системы управления ракеты нормальной аэродинамической схемы с X-образно расположенными рулями при угле атаки α, большем угла скольжения β при принятии за положительные отклонения четырех рулей ракеты δ1, δ2, δ3, δ4 - отклонение вверх. На фигуре 2: 5 - вычислитель текущего угла наклона траектории θ, 6 - измеритель угла крена γ, 7 - вычислитель текущего угла пути ψ, 8 -измеритель воздушной скорости Vа, 9 - сумматор обратной связи с усилителем рассогласования, 10 - блок суммирования и формирования знаков сигналов управления δ ˙ В , δ ˙ Э , δ ˙ Н , δ ˙ П С . Кроме того на фигуре 2 также показана работа блока суммирования и формирования знаков сигналов управления δ ˙ В , δ ˙ Э , δ ˙ Н , δ ˙ П С . В частности, показано, что при положительных рассогласованиях воздушной скорости Vа происходит синхронное перемещение соседних рулей с каждой стороны попарно-синхронно навстречу друг другу. В целом, выбор знака для данной комбинации отклонения рулей ракеты δ1, δ2, δ3, δ4 по сигналам δВ, δЭ, δН, δПС может быть представлен матричным выражением:

[ δ ˙ 1 δ ˙ 2 δ ˙ 3 δ ˙ 4 ] = 1 4 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] [ δ ˙ в δ ˙ н δ ˙ э δ ˙ п с ] .

На фигуре 3 изображен вид на отклоненные рулевые поверхности с хвоста ракеты при угле скольжения β большем угла атаки α. На фигуре 3 цифрами 1, 2, 3, 4 обозначены номера рулей. Предложенный способ управления ракетой состоит в том, что для уменьшения продольной скорости ракеты рули попарно отклоняются попарно сверху и снизу (1 навстречу 4 и 2 навстречу 3).

На фигуре 4 изображена функциональная схема структурная схема системы управления ракеты нормальной аэродинамической схемы с X-образно расположенными рулями при угле скольжения β большем угла атаки α при принятии за положительные отклонения четырех рулей ракеты δ1, δ2, δ3, δ4 - отклонение вверх. На фигуре 4: 5 - вычислитель текущего угла наклона траектории θ, 6 - измеритель угла крена γ, 7 - вычислитель текущего угла пути ψ, 8 - измеритель воздушной скорости Vа, 9 - сумматор обратной связи с усилителем рассогласования, 10 - блок суммирования и формирования знаков сигналов управления δ ˙ В , δ ˙ Э , δ ˙ Н , δ ˙ П С . Кроме того, на фигуре 4 показана работа блока суммирования и формирования знаков сигналов управления δ ˙ В , δ ˙ Э , δ ˙ Н , δ ˙ П С . В частности, показано, что при положительных рассогласованиях воздушной скорости Vа происходит синхронное перемещение верхних рулей и нижних рулей попарно-синхронно навстречу друг другу. В целом, выбор знака для данной комбинации отклонения рулей ракеты δ1, δ2, δ3, δ4 по сигналам δВ, δЭ, δН, δПС может быть представлен матричным выражением:

[ δ ˙ 1 δ ˙ 2 δ ˙ 3 δ ˙ 4 ] = 1 4 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] [ δ ˙ в δ ˙ н δ ˙ э δ ˙ п с ] .

Похожие патенты RU2510485C2

название год авторы номер документа
ЛЕТАТЕЛЬНЫЙ АППАРАТ 2012
  • Канунников Андрей Вячеславович
  • Литвинов Александр Анатольевич
RU2493053C1
СПОСОБ ОПРЕДЕЛЕНИЯ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК УПРАВЛЯЕМОГО СНАРЯДА В ПОЛЕТЕ, СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА АТАКИ УПРАВЛЯЕМОГО СНАРЯДА В ПОЛЕТЕ, СПОСОБ СТАБИЛИЗАЦИИ УГЛОВОГО ПОЛОЖЕНИЯ УПРАВЛЯЕМОГО СНАРЯДА И УСТРОЙСТВА ДЛЯ ИХ ОСУЩЕСТВЛЕНИЯ 2002
  • Шипунов А.Г.
  • Морозов В.И.
  • Фимушкин В.С.
  • Евтеев К.П.
  • Петрушин В.В.
RU2218550C2
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛОВ УПРАВЛЕНИЯ ВРАЩАЮЩЕЙСЯ ВОКРУГ ПРОДОЛЬНОЙ ОСИ ДВУХКАНАЛЬНОЙ РАКЕТОЙ 2012
  • Шипунов Аркадий Георгиевич
  • Морозов Владимир Иванович
  • Петрушин Владимир Васильевич
RU2511610C1
УСТРОЙСТВО АВТОМАТИЧЕСКОГО ВЫВЕДЕНИЯ САМОЛЕТА ИЗ РЕЖИМОВ СВАЛИВАНИЯ И ШТОПОРА В ШТАТНЫЙ РЕЖИМ ПОЛЕТА 2005
  • Кондратов Анатолий Александрович
  • Курдюмов Юрий Николаевич
  • Павлова Валентина Петровна
  • Фролкина Людмила Вениаминовна
RU2280591C1
АВТОПИЛОТ ДЛЯ СИММЕТРИЧНОЙ ЗЕНИТНОЙ УПРАВЛЯЕМОЙ РАКЕТЫ 2006
  • Будилин Всеволод Александрович
  • Мизрохи Владимир Яковлевич
  • Пуцыкович Дмитрий Вячеславович
RU2302358C1
РАКЕТА 2005
  • Байков Андрей Викторович
  • Богатырев Анатолий Павлович
  • Бурак Борис Корнеевич
  • Ватолин Валентин Владимирович
  • Дзасохов Семен Харитонович
  • Кегелес Авангард Леонидович
  • Левин Яков Залманович
  • Макаров Валерий Викторович
  • Макаровский Эдуард Григорьевич
  • Орелиов Григорий Рафаилович
  • Пуньков Александр Васильевич
  • Смольский Геннадий Николаевич
  • Соколовский Геннадий Александрович
  • Тулапин Андрей Павлович
  • Федоров Владимир Викторович
  • Цыганов Анатолий Иванович
  • Ямницкий Борис Маерович
RU2272984C1
СИСТЕМА УПРАВЛЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА В КАНАЛЕ КУРСА 2021
  • Кабаков Владимир Борисович
  • Казаков Евгений Васильевич
  • Кисин Евгений Николаевич
  • Левитин Игорь Моисеевич
  • Оболенский Юрий Геннадьевич
  • Орлов Сергей Владимирович
RU2768310C1
БОРТОВАЯ ИНТЕГРИРОВАННАЯ СИСТЕМА ИНФОРМАЦИОННОЙ ПОДДЕРЖКИ ЭКИПАЖА И КОГНИТИВНЫЙ ФОРМАТ ПРЕДСТАВЛЕНИЯ ПОЛЕТНОЙ ИНФОРМАЦИИ НА ЭТАПЕ "ВЗЛЕТ" МНОГОДВИГАТЕЛЬНОГО ВОЗДУШНОГО СУДНА 2013
  • Егоров Валерий Николаевич
  • Архипов Владимир Алексеевич
  • Буркина Ирина Владимировна
  • Олаев Виталий Алексеевич
  • Углов Андрей Александрович
RU2550887C2
СИСТЕМА УПРАВЛЕНИЯ САМОЛЕТОМ 2003
  • Крюков С.П.
  • Казаков В.В.
  • Голованов Н.А.
  • Кузнецов А.Г.
  • Калик А.А.
  • Кирюшкин А.П.
  • Демченко О.Ф.
  • Попович К.Ф.
  • Школин В.П.
  • Митриченко А.Н.
  • Кодола В.Г.
RU2235043C1
Моделирующий комплекс для отладки системы управления автономным подвижным объектом 2017
  • Каманин Валерий Владимирович
  • Юрескул Андрей Григорьевич
  • Попадьин Александр Николаевич
RU2662331C1

Иллюстрации к изобретению RU 2 510 485 C2

Реферат патента 2014 года СПОСОБ УПРАВЛЕНИЯ СКОРОСТЬЮ ПОЛЕТА РАКЕТЫ НОРМАЛЬНОЙ АЭРОДИНАМИЧЕСКОЙ СХЕМЫ С Х-ОБРАЗНО РАСПОЛОЖЕННЫМИ РУЛЯМИ

Изобретение относится к области авиации и ракетостроения, в частности к системам стабилизации полета. Способ управления заключается в измерении текущих значений углов наклона траектории θ, пути ψ, крена γ, определении необходимых для наведения на цель ракеты значений углов наклона траектории θзад, пути ψзад, крена γзад, определении сигналов рассогласований по углам наклона траектории Δθзад, пути Δψзад, крена Δγзад от заданных значений и формировании сигналов скорости отклонения рулей по каналу высоты δ ˙ B , направления δ ˙ H , элеронов δ ˙ Э . Сигналы управления по каналам δ ˙ B , δ ˙ H , δ ˙ Э суммируются между собой и формируют сигналы управления каждого из четырех X-образно расположенных рулей δ 1 с у м м , δ 2 с у м м , δ 3 с у м м , δ 4 с у м м . Измеряя воздушную скорость движения ракеты Va и зная воздушную скорость, необходимую для движения на цель Va зад, определяют рассогласование от заданной скорости ΔVa зад=Va-Va зад и формируют дополнительный сигнал скорости отклонения рулей по каналу продольной скорости δ ˙ П С . Формируют сигналы управления каждого из четырех X-образно расположенных рулей δ 1 с у м м , δ 2 с у м м , δ 3 с у м м , δ 4 с у м м : - при угле атаки, большем угла скольжения - синхронное перемещение соседних рулей с каждой стороны попарно-синхронно навстречу друг другу; - при угле скольжения, большем угла атаки - синхронное перемещение соседних рулей сверху и снизу попарно-синхронно навстречу друг другу, что приводит к управлению значениями воздушной скорости движения ракеты Va. Повышается эффективность управления. 4 ил.

Формула изобретения RU 2 510 485 C2

Способ управления скоростью полета ракеты нормальной аэродинамической схемы с X-образно расположенными рулями, заключающийся в определении текущих значений углов наклона траектории θ, пути ψ, крена γ, определении необходимых для наведения на цель ракеты значений углов наклона траектории θзад, пути ψзад, крена γзад, определении сигналов рассогласований по углам наклона траектории Δθзад, пути Δψзад, крена Δγзад от заданных значений, по данным рассогласованиям формируют сигналы скорости отклонения рулей по каналу высоты δ ˙ B , направления δ ˙ H , элеронов δ ˙ Э , далее путем суммирования сигналов управления по каналам δ ˙ B , δ ˙ H , δ ˙ Э между собой с соблюдением правила знаков формируют сигналы управления каждого из четырех X-образно расположенных рулей ракеты δ 1 с у м м , δ 2 с у м м , δ 3 с у м м , δ 4 с у м м и приводят данные сигналы к общему уровню, после чего подают на соответствующие рулевые привода X-образно расположенных рулей, отличающийся тем, что измеряют воздушную скорость движения ракеты Va, определяют воздушную скорость, необходимую для движения на цель Va зад, определяют и усиливают рассогласование от заданной воздушной скорости ΔVа зад=Vа-Vа зад, и формируют сигнал скорости отклонения рулей по каналу продольной скорости δ ˙ п с , который дополнительно суммируют с сигналами управления каждого из четырех X-образно расположенных рулей δ 1 с у м м , δ 2 с у м м , δ 3 с у м м , δ 4 с у м м , и после усиления подают на соответствующие рулевые привода X-образно расположенных рулей со знаком, обеспечивающим:
- при угле атаки, большем угла скольжения, - синхронное перемещение соседних рулей с левой и с правой стороны попарно-синхронно навстречу друг другу;
- при угле атаки, меньшем угла скольжения, - синхронное перемещение верхних рулей и нижних рулей попарно-синхронно навстречу друг другу, в результате чего отклонение рулей приводит к заданным управляющим воздействиям на воздушную скорость движения ракеты Va.

Документы, цитированные в отчете о поиске Патент 2014 года RU2510485C2

СПОСОБ ФОРМИРОВАНИЯ СИГНАЛОВ УПРАВЛЕНИЯ СИММЕТРИЧНОЙ РАКЕТОЙ 2007
  • Будилин Всеволод Александрович
RU2374602C2
СПОСОБ УПРАВЛЕНИЯ ТРАЕКТОРИЕЙ ДВИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Жуков Сергей Петрович
  • Зименков Вадим Дмитриевич
  • Козлов Орфей Александрович
  • Поляков Андрей Николаевич
  • Пятко Сергей Григорьевич
  • Синцов Вениамин Петрович
  • Старостин Игорь Александрович
  • Тарасов Виталий Андреевич
RU2280589C2
ХВОСТОВОЙ ОТСЕК ВОЗДУШНО-ДИНАМИЧЕСКИХ РУЛЕВЫХ ПРИВОДОВ ДЛЯ УПРАВЛЯЕМЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ (ПРЕИМУЩЕСТВЕННО ДЛЯ УПРАВЛЯЕМЫХ АВИАЦИОННЫХ БОМБ) И ПНЕВМОДВИГАТЕЛЬ РУЛЕВОГО ПРИВОДА 2009
  • Бабушкин Дмитрий Петрович
  • Евтеев Константин Петрович
  • Кривов Иван Артемьевич
  • Кузнецов Михаил Юрьевич
  • Никаноров Борис Александрович
  • Плещеев Игорь Евгеньевич
  • Фимушкин Валерий Сергеевич
  • Храпов Анатолий Викторович
  • Шелякин Юрий Петрович
  • Семенов Сергей Сергеевич
RU2418261C2
КОРРЕКТИРУЕМЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 1992
  • Буадзе В.Ш.
  • Бабушкин Д.П.
  • Власов В.В.
  • Коновалов Е.А.
  • Короткий В.И.
  • Матыцин В.Д.
  • Мельников В.Ф.
  • Мерцалов Б.Е.
  • Русаков А.П.
  • Сологуб В.М.
  • Ткачев В.В.
  • Трубенко Б.И.
  • Хотяков В.Д.
  • Храпов А.В.
  • Бундин Ю.В.
  • Соловей Э.Я.
  • Финогенов В.С.
RU2014559C1
КОРРЕКТИРУЕМЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ, СТАБИЛИЗИРОВАННЫЙ ПО КРЕНУ, С ЛАЗЕРНОЙ ГОЛОВКОЙ САМОНАВЕДЕНИЯ 1993
  • Бабушкин Д.П.
  • Даньшин А.П.
  • Матыцин В.Д.
  • Мельников В.Ф.
  • Мерцалов Б.Е.
  • Сологуб В.М.
  • Соловей Э.Я.
  • Старостин В.А.
  • Тараканов И.А.
  • Финогенов В.С.
  • Хотяков В.Д.
  • Храпов А.В.
RU2044255C1
СПОСОБ ПОВЫШЕНИЯ ПРОДУКТИВНОСТИ МОЛОДНЯКА КРОЛИКОВ 2018
  • Рассолов Сергей Николаевич
  • Ворошилин Роман Алексеевич
RU2694626C1

RU 2 510 485 C2

Авторы

Писковацкий Андрей Анатольевич

Лущик Александр Валерьевич

Агеев Андрей Михайлович

Баланян Сергей Томасович

Дешин Владимир Олегович

Даты

2014-03-27Публикация

2012-01-13Подача