Изобретение относится к устройствам для генерации микроволновых плазменных факелов с целью углекислотной и паровой и комбинированной конверсии метана в синтез-газ.
Известен способ паровой конверсии, который включает контактирование исходного сырья в смеси с водяным паром с двухслойным катализатором. В каждом слое подобраны составы специализированных катализаторов и условия проведения процесса. Способ позволяет увеличить производительность процесса, снизить коксоотложения и использовать тяжелое сырье, содержащее ароматические углеводороды (RU 93033867 А1, 20.10.1995).
Недостатком известного способа являются сложность производства.
Техническим результатом предложенного решения является возможность получения водородсодержащего газа из смеси метана с углекислым газом и водяным аэрозолем с помощью простого в изготовлении и не включающего дорогостоящих механических и электронных устройств. Данный способ подачи воды в плазму позволяет отказаться от прогрева внутреннего электрода микроволнового факела.
Технический результат достигается тем, что способ конверсии углеводородно-водяной смеси в синтез-газ осуществляется тем, что рабочий газ разделяют на два потока, при этом один поток газа направляют в устройство для подачи воды, смешивают с водным аэрозолем, затем соединяют с другим потоком и подают смесь на вход в центральный электрод микроволнового плазматрона с формированием в струе углеводородно-водяной смеси микроволнового плазменного факела, при этом осуществляют регулирование расхода обоих потоков рабочего газа, обеспечивая необходимые параметры конечного продукта.
На чертеже представлено устройство, реализующее предложенный способ.
Паровая конверсия метана в синтез-газ по реакции
СН4+H2O→3H2+СО
привлекательна тем, что отличается наибольшим удельным выходом продукта и наибольшим выходом водорода. Однако проведение этой сильно эндоэргической реакции требует большой затраты энергии как для нагрева реакционной зоны, так и парообразования и нагрева паропровода для ввода пара в реактор. Кроме того, это вызывает большие технические трудности.
Предлагаемый способ проведения конверсии не требует предварительного парообразования и его транспортировки, на что идет основная подводимая энергия. Причем основная энергия непроизводительно (бесполезно) идет на нагрев стенок реактора, парообразователя и паропровода. Настоящий метод отличается тем, что вода в виде аэрозоля, генерируемого небулайзером, поступает вместе с рабочим газом в реактор в жидкой фазе. Нагрев же и испарение воды непосредственно в реакторе требует несравнимо меньшей энергии.
В качестве рабочего газа может использоваться не только метан, но и различные смеси газов. Например, при добавлении к метану углекислого газа реализуется углекислотная, паровая и комбинированная конверсии метана в синтез-газ.
Способ конверсии метан-водяной смеси в синтез-газ осуществляется тем, что рабочий газ разделяют на два потока, при этом один поток газа направляют в устройство для подачи воды, смешивают с водным аэрозолем, затем соединяют с другим потоком и подают смесь на вход в центральный электрод микроволнового плазматрона с формированием в струе метан-водяной смеси микроволнового плазменного факела, при этом осуществляют регулирование расхода обоих потоков рабочего газа, обеспечивая необходимые параметры конечного продукта. Регулирование потоков осуществляют с помощью установки соответствующих регулирующих устройств (на чертеже не показано).
Представляемый способ использует устройство для генерации микроволновых плазменных факелов, поскольку энерговклад в микроволновый разряд наиболее эффективен с экономической точки зрения, поскольку реакционная зона оторвана от стенок реактора.
Устройство содержит прямоугольный резонатор 1, коаксиальный резонатор внешнего электрода 2, продолжение внешнего электрода коаксиального волновода сетку 3, рабочую камеру 4, смотровые окна 5, плазму микроволнового разряда 6, магнетрон 7, устройство подачи воды 8 (небулайзер ультразвукового или компрессорного типа).
На чертеже приведен вариант устройства, в котором используется магнетрон 7 с частотой микроволнового излучения 2.45 ГГц, средней мощностью Р=600 - 1500 Вт.
Плазмотрон работает следующим образом. Газ подается через центральный
электрод. На входе центрального электрода находится система подачи воды, при этом часть рабочего газа подается напрямую в центральный электрод, а часть газа проходит через небулайзер (8) и в виде водного аэрозоля поступает в центральный электрод. При включении системы питания магнетрона 7 на выходе сопла получают плазменный факел 6.
После запуска магнетрона 7 микроволновое излучение начинает накапливаться в системе прямоугольный резонатор 1 - коаксиальный тракт. По мере работы магнетрона и накопления микроволновой энергии напряженность поля на конце сопла возрастает и, в некоторый момент времени, достигает пробойной величины. При этом на конце сопла в струе рабочего газа образуется пробой и формируется область газоразрядной плазмы. Эта плазма в силу своей высокой проводимости фактически становится продолжением внутреннего электрода коаксиальной линии, и электромагнитная волна теперь может распространяться дальше по коаксиалу, до конца области, занятой плазмой, где вновь обеспечиваются пробойные условия для прилегающей области. Таким образом, в струе рабочего газа формируется плазменный факел, длина которого может достигать десятков сантиметров. Поскольку даже при не очень мощных магнетронах напряженность электрического поля на конце сопла за счет накопления микроволновой энергии в коаксиальном резонаторе может достигать значительной величины, возможна работа устройства в широком спектре газов и их смесей.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОИЗВОДСТВА МИКРОШАРИКОВ ИЗ РАСПЛАВА ЦЕМЕНТНОГО КЛИНКЕРА | 2018 |
|
RU2691912C1 |
Способ микроволновой плазмохимической конверсии метана в синтез-газ и устройство для его осуществления | 2016 |
|
RU2640543C1 |
МИКРОВОЛНОВЫЙ ПЛАЗМАТРОН | 1999 |
|
RU2153781C1 |
ПЛАЗМЕННЫЙ КОНВЕРТОР ГАЗООБРАЗНОГО И ЖИДКОГО УГЛЕВОДОРОДНОГО СЫРЬЯ И ТОПЛИВ В СИНТЕЗ-ГАЗ НА ОСНОВЕ МИКРОВОЛНОВОГО РАЗРЯДА | 2006 |
|
RU2318722C2 |
СПОСОБ ОЧИСТКИ, ДЕСТРУКЦИИ И КОНВЕРСИИ ГАЗА | 2011 |
|
RU2486719C1 |
Устройство микроволновой плазмохимической конверсии метана в синтез-газ | 2016 |
|
RU2648317C1 |
СПОСОБ СВЧ-ПЛАЗМЕННОЙ АКТИВАЦИИ ВОДЫ ДЛЯ СИНТЕЗА ПЕРОКСИДА ВОДОРОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2020 |
|
RU2761437C1 |
УСТРОЙСТВО ДЛЯ ВОЗБУЖДЕНИЯ И ПОДДЕРЖАНИЯ СВЧ-РАЗРЯДОВ В ПЛАЗМОХИМИЧЕСКИХ РЕАКТОРАХ | 2011 |
|
RU2468544C1 |
СВЧ ПЛАЗМЕННЫЙ КОНВЕРТОР | 2013 |
|
RU2522636C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА | 2011 |
|
RU2548410C2 |
Изобретение относится к области химии. Метан-водяную смесь разделяют на два потока. Один поток газа направляют в устройство для подачи воды, смешивают с водным аэрозолем, затем соединяют с другим потоком и подают смесь на вход в центральный электрод микроволнового плазматрона, осуществляя регулирование расхода потоков. В струе метан-водяной смеси формируют микроволновый плазменный факел. Изобретение позволяет упростить процесс. 1 ил.
Способ конверсии метан-водяной смеси в синтез-газ, характеризующийся тем, что рабочий газ разделяют на два потока, при этом один поток газа направляют в устройство для подачи воды, смешивают с водным аэрозолем, затем соединяют с другим потоком и подают смесь на вход в центральный электрод микроволнового плазматрона, осуществляя регулирование расхода потоков, причем в струе метан-водяной смеси формируют микроволновый плазменный факел.
Чуркосушилка, смонтированная на шасси автомашины | 1948 |
|
SU80450A1 |
РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА И СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА | 1992 |
|
RU2117626C1 |
Способ получения ацетилена и синтез-газа | 1984 |
|
SU1531849A3 |
ПЛАЗМЕННЫЙ КОНВЕРТОР ГАЗООБРАЗНОГО И ЖИДКОГО УГЛЕВОДОРОДНОГО СЫРЬЯ И ТОПЛИВ В СИНТЕЗ-ГАЗ НА ОСНОВЕ МИКРОВОЛНОВОГО РАЗРЯДА | 2006 |
|
RU2318722C2 |
RU 2075432 C1, 20.03.1997 | |||
СПОСОБ ПЛАЗМЕННОЙ КОНВЕРСИИ МОТОРНЫХ ТОПЛИВ В СИНТЕЗ-ГАЗ И ПЛАЗМЕННЫЙ КОНВЕРТОР ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2000 |
|
RU2182239C2 |
US 20030024806 A1, 06.02.2003 |
Авторы
Даты
2014-04-20—Публикация
2012-08-17—Подача