Способ микроволновой плазмохимической конверсии метана в синтез-газ и устройство для его осуществления Российский патент 2018 года по МПК B01J19/00 

Описание патента на изобретение RU2640543C1

Изобретение относится к химии, в частности к способам и устройствам микроволновой плазмохимической конверсии метана в синтез-газ.

Известен способ конверсии углеводородно-водяной смеси в синтез-газ, осуществляемый тем, что рабочий газ разделяют на два потока, при этом один поток газа направляют в устройство для подачи воды, смешивают с водным аэрозолем, затем соединяют с другим потоком и подают смесь на вход в центральный электрод микроволнового плазматрона с формированием в струе углеводородно-водяной смеси микроволнового плазменного факела, при этом осуществляют регулирование расхода обоих потоков рабочего газа, обеспечивая необходимые параметры конечного продукта (RU 2513622 C2, 20.04.2014).

Недостатком известного способа является то, что плазма постоянно контактирует с внутренним электродом микроволнового тракта, рассеивая часть тепловой энергии на нем. Это ограничивает уровень мощности микроволнового излучения.

Техническим результатом заявленного способа является:

1) хорошая гомогенизация метан-паровой смеси, что улучшает качественный состав синтез-газа;

2) отсутствие необходимости использовать катализаторы, все реакции протекают исключительно в плазме;

3) высокая производительность.

Технический результат достигается тем, что способ микроволновой плазмохимической конверсии метана в синтез-газ, заключается в том, что создают давление в рабочей камеры до 0,1-0,5 мм рт. ст., подают в рабочую камеру метан до давления 740-750 мм рт. ст. и воду в количестве 0,9-1 см3, затем рабочую камеру прогревают до температуры 120-130°C, вводят через окно микроволновое излучение для образования плазмы и заполняют плазмой весь объем рабочей камеры.

Известно устройство для реализации способа конверсии углеводородно-водяной смеси в синтез-газ, содержащее камеру, микроволновый излучатель, нагреватель, патрубки ввода метана и воды (RU 2513622 C2, 20.04.2014).

Недостатками известного устройства являются:

1) предельный уровень микроволновой мощности, на котором может работать устройство, не превышает 4-5 кВт;

2) предельная производительность по синтез-газу не превышает 1 м3/ч;

3) существенные тепловые нагрузки на элементы конструкции (внутренний электрод) при работе на максимальных мощностях;

4) сложность конструкции за счет необходимости жидкостного охлаждения элементов, подверженных тепловому воздействию.

Задачей изобретения является создания устройства, обладающего принципиальной схемой плазмохимического микроволнового устройства (реактора), обладающего высокой эффективностью конверсии метана в синтез-газ и при этом работающего при средней мощности микроволнового излучения P≥100 кВт.

Техническим результатом устройства является:

1) простота конструкции реактора;

2) из-за возможности работы на высоких уровнях микроволновой мощности (до 500 кВт) увеличенная производительность устройства;

3) снижение теплового воздействия на конструктивные элементы за счет определенного конструктивного выполнения и особенностей образования и развития плазмы.

Технический результат достигается тем, что устройство микроволновой плазмохимической конверсии метана в синтез-газ содержит источник микроволновой энергии, рабочую камеру с соотношением внутренних размеров камеры диаметра и длины 0,4<Dk/Lk<0,3 и расположенный на внешней поверхности рабочей камеры нагревательный элемент, соединенный через термопару с терморегулятором, при этом на одном торце рабочей камеры выполнено входное окно, через которое вводят микроволновое излучение с отношением диаметра окна к диаметру рабочей камеры 0,8<Do/Dk<1, на другом торце камеры размещены патрубки откачки и ввода рабочей среды, причем в камере на противоположной стороне от окна размещен инициатор.

Нагревательный элемент может быть выполнен в виде ленты.

Рабочая камера может быть выполнена из дюралюминиевого сплава.

Входное окно может быть выполнено кварцевым.

Инициатор может быть выполнен в виде скрученной проволоки с произвольным шагом, диаметром и направлением кручения.

В качестве источника микроволновой энергии используется ГИРОТРОН.

На чертеже представлено устройство, реализующее способ конверсии углеводородно-водяной смеси в синтез-газ.

Способ заключается в реализации некаталитической плазмохимической конверсии метана в синтез-газ по реакции CH4+H2O=CO+3H2.

Устройство микроволновой плазмохимической конверсии метана в синтез-газ содержит рабочую камеру 1 с соотношением внутренних размеров камеры 1 диаметра и длины 0,4<Dk/Lk<0,3 и расположенный на внешней поверхности рабочей камеры нагревательный элемент 3, соединенный через термопару 4 с терморегулятором, при этом на одном торце рабочей камеры выполнено кварцевое входное окно 2, через которое вводят микроволновое излучение с отношением диаметра окна 2 к диаметру рабочей камеры 0,8<Do/Dk<1. На другом торце камеры 1 размещены патрубки откачки 5 и ввода 6 рабочей среды, причем в камере на противоположной стороне от окна размещен инициатор 7. Устройство содержит источник микроволновой энергии (на чертеже не показан).

Нагревательный элемент 3 может быть выполнен в виде ленты.

Рабочая камера 1 может быть выполнена из дюралюминиевого сплава.

Входное окно 2 может быть выполнено кварцевым.

Инициатор 7 может быть выполнен в виде скрученной проволоки с произвольным шагом, диаметром и направлением кручения.

Технический результат достигается только в пределах указанных выше диапазонов размеров, что доказано экспериментально.

Способ микроволновой плазмохимической конверсии метана в синтез-газ, характеризующийся тем, что создают давление в рабочей камеры до 0,1-0,5 мм рт. ст., подают в рабочую камеру метан до давления 740-750 мм рт. ст. и воду в количестве 0,9-1 см3, затем рабочую камеру прогревают до температуры 120-130°C, вводят через окно микроволновое излучение для образования плазмы и заполняют плазмой весь объем рабочей камеры.

Технический результат достигается только в пределах указанных выше диапазонах режимных параметров, что доказано экспериментально.

Конкретный пример реализации предложенного способа

Устройство содержит рабочую камеру 1 с соотношением внутренних размеров камеры диаметра и длины 0,4<Dk/Lk<0,3. Для прогрева, камера плотно обматывалась плоским нагревательным элементом 3 - лентой, - которая управлялась с помощью терморегулятора по средствам обратной связи через термопару 4. Для ввода микроволнового излучения в торце камеры предусмотрено кварцевое входное окно 2 диаметром 6,5-7 см и толщиной 5-6 мм. Для улучшения однородности прогрева, камера выполнена из дюральалюминиевого сплава. Для откачки камеры и запуска в нее рабочей смеси предусмотрены патрубки 5 и 6 соответственно, которые находятся в противоположном торце от кварцевого входного окна 2. Для формирования плазмы в камере предусмотрен разрядный инициатор 7, который представляет из себя скрученную проволоку диаметром 1-1,5 мм с произвольным шагом, диаметром и направлением кручения (путанка). Инициатор 7 находится в противоположном от кварцевого окна торце камеры.

Способ заключается в откачке камеры через патрубок 5 до давления 0,1-0,5 мм.рт.ст., запуске в нее метана (СН4) до давления 740-750 мм рт. ст. и воды в количестве 0,9-1 см3 через патрубок 6. После этого камера прогревалась до температуры 120-130°С, в результате чего в камере образовывалась гомогенная метан-паровая смесь. Прогрев камеры осуществлялся нагревательным элементом 3. После этого в камеру через входное окно 2 вводилось микроволновое излучение, генерируемое источником микроволновой энергии ГИРОТРОНОМ. Микроволновое излучение вводится в камеру импульсно через входное окно 2 параксиальным пучком. Мощность в импульсе составляет 300 кВт, длительность импульса 3 милисекунды.

После подачи в камеру микроволнового излучения, происходит образование плазмы на разрядном инициаторе 7, после чего плазма заполняет весь объем камеры 1. Разрядный инициатор 7 усиливает электрическое поле падающего на него микроволнового излучения до величин больше пробойных (30 кВ/см), при этом достигаются необходимые для развития и формирования плазмы условия.

Под действием этой плазмы происходит плазмохимическое некаталитическое превращение метан-паровой смеси в синтез-газ по реакции СН4+H2O=СО+3Н2.

Похожие патенты RU2640543C1

название год авторы номер документа
Устройство микроволновой плазмохимической конверсии метана в синтез-газ 2016
  • Давыдов Алексей Михайлович
  • Грицинин Сергей Иванович
  • Артемьев Константин Владимирович
  • Коссый Игорь Антонович
  • Двоенко Александр Вилорьевич
  • Лаврин Алексей Викторович
  • Хабеев Ренат Рушанович
  • Батанов Герман Михайлович
  • Сарксян Карен Агасевич
  • Харчев Николай Константинович
RU2648317C1
СПОСОБ КОНВЕРСИИ ЛЕГКИХ УГЛЕВОДОРОДОВ В БОЛЕЕ ТЯЖЕЛЫЕ 1999
  • Медведев Ю.В.
  • Ремнев Г.Е.
  • Сметанин В.И.
  • Ширшов А.Н.
RU2149884C1
СПОСОБ МИКРОВОЛНОВЫЙ КОНВЕРСИИ МЕТАН-ВОДЯНОЙ СМЕСИ В СИНТЕЗ-ГАЗ 2012
  • Коссый Игорь Антонович
  • Анпилов Андрей Митрофанович
  • Бархударов Эдуард Михайлович
  • Грицинин Сергей Иванович
  • Давыдов Алексей Михайлович
  • Тактакишвили Мераб Иванович
  • Двоенко Александр Вилорьевич
  • Хабеев Ренат Рушанович
RU2513622C2
УСТРОЙСТВО ДЛЯ ПЛАЗМОХИМИЧЕСКОЙ КОНВЕРСИИ УГЛЕВОДОРОДНОГО ГАЗА 2009
  • Жерлицын Алексей Григорьевич
  • Медведев Юрий Васильевич
  • Шиян Владимир Петрович
  • Королев Юрий Дмитриевич
  • Франц Олег Борисович
RU2393988C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ УГЛЕРОДА И ВОДОРОДА ИЗ УГЛЕВОДОРОДНОГО ГАЗА 2008
  • Жерлицын Алексей Григорьевич
  • Шиян Владимир Петрович
  • Медведев Юрий Васильевич
RU2390493C1
СВЧ-ПЛАЗМОХИМИЧЕСКИЙ РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО АЛМАЗА 2022
  • Шевченко Михаил Юрьевич
  • Алтахов Александр Сергеевич
  • Крандиевский Святослав Олегович
  • Мудрецов Дмитрий Валентинович
  • Алексеев Андрей Михайлович
RU2803644C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА И УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ И СТРУКТУР ИЗ УГЛЕВОДОРОДНОГО ГАЗА, ВКЛЮЧАЯ ПОПУТНЫЙ НЕФТЯНОЙ ГАЗ 2009
  • Мальцев Василий Анатольевич
  • Нерушев Олег Алексеевич
  • Новопашин Сергей Андреевич
RU2425795C2
ПЛАЗМЕННЫЙ КОНВЕРТОР ГАЗООБРАЗНОГО И ЖИДКОГО УГЛЕВОДОРОДНОГО СЫРЬЯ И ТОПЛИВ В СИНТЕЗ-ГАЗ НА ОСНОВЕ МИКРОВОЛНОВОГО РАЗРЯДА 2006
  • Бабарицкий Александр Иванович
  • Баранов Иван Евгеньевич
  • Демкин Святослав Александрович
  • Животов Виктор Константинович
  • Кротов Михаил Федорович
  • Московский Антон Сергеевич
  • Потапкин Борис Васильевич
  • Смирнов Роман Викторович
  • Фатеев Владимир Николаевич
  • Чебаньков Фёдор Николаевич
RU2318722C2
СВЧ ПЛАЗМЕННЫЙ КОНВЕРТОР 2013
  • Жерлицын Алексей Григорьевич
  • Шиян Владимир Петрович
  • Канаев Геннадий Григорьевич
RU2522636C1
СПОСОБ КОНВЕРСИИ МЕТАНА ПЛАЗМЕННО-КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Блинов Леонид Михайлович
  • Долголаптев Анатолий Васильевич
  • Кустов Леонид Модестович
RU2315802C2

Иллюстрации к изобретению RU 2 640 543 C1

Реферат патента 2018 года Способ микроволновой плазмохимической конверсии метана в синтез-газ и устройство для его осуществления

Изобретение относится к химии, в частности к устройствам для генерации микроволновых плазменных факелов с целью углекислотной и паровой и комбинированной конверсии метана в синтез-газ. В способе микроволновой плазмохимической конверсии метана в синтез-газ создают давление в рабочей камеры до 0,1-0,5 мм рт. ст., подают в рабочую камеру метан до давления 740-750 мм рт. ст. и воду в количестве 0,9-1 см3. Затем рабочую камеру прогревают до температуры 120-130°C, вводят через окно микроволновое излучение для образования плазмы и заполняют плазмой весь объем рабочей камеры. Устройство микроволновой плазмохимической конверсии метана в синтез-газ содержит источник микроволновой энергии, рабочую камеру с соотношением внутренних размеров камеры диаметра и длины 0,4<Dk/Lk<0,3 и расположенный на внешней поверхности рабочей камеры нагревательный элемент, соединенный через термопару с терморегулятором. На одном торце рабочей камеры выполнено входное окно с отношением его диаметра к диаметру рабочей камеры 0,8<Do/Dk<1. На другом торце камеры размещены патрубки откачки и ввода рабочей среды. В камере на противоположной стороне от окна размещен инициатор. Техническим результатом изобретения является высокая эффективность конверсии метана в синтез-газ, повышение производительности и снижение теплового воздействия на конструктивные элементы за счет определенного конструктивного выполнения и особенностей образования и развития плазмы. 2 н. и 5 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 640 543 C1

1. Способ микроволновой плазмохимической конверсии метана в синтез-газ, характеризующийся тем, что создают давление в рабочей камеры до 0,1-0,5 мм рт. ст., подают в рабочую камеру метан до давления 740-750 мм рт. ст. и воду в количестве 0,9-1 см3, затем рабочую камеру прогревают до температуры 120-130°C, вводят через окно микроволновое излучение для образования плазмы и заполняют плазмой весь объем рабочей камеры.

2. Устройство микроволновой плазмохимической конверсии метана в синтез-газ, характеризующееся тем, что содержит источник микроволновой энергии, рабочую камеру с соотношением внутренних размеров камеры диаметра и длины 0,4<Dk/Lk<0,3, и расположенный на внешней поверхности рабочей камеры нагревательный элемент, соединенный через термопару с термогерулятором, при этом на одном торце рабочей камеры выполнено входное окно, через которое вводят микроволновое излучение с отношением диаметра окна к диаметру рабочей камеры 0,8<Do/Dk<1, на другом торце камеры размещены патрубки откачки и ввода рабочей среды, причем в камере на противоположной стороне от окна размещен инициатор.

3. Устройство по п. 2, характеризующееся тем, что нагревательный элемент выполнен в виде ленты.

4. Устройство по п. 2, характеризующееся тем, что рабочая камера выполнена из дюралюминиевого сплава.

5. Устройство по п. 2, характеризующееся тем, что входное окно выполнено кварцевым.

6. Устройство по п. 2, характеризующееся тем, что инициатор выполнен в виде скрученной проволоки с произвольным шагом, диаметром и направлением кручения.

7. Устройство по п. 2, характеризуется тем, что в качестве источника микроволновой энергии используется ГИРОТРОН.

Документы, цитированные в отчете о поиске Патент 2018 года RU2640543C1

СПОСОБ МИКРОВОЛНОВЫЙ КОНВЕРСИИ МЕТАН-ВОДЯНОЙ СМЕСИ В СИНТЕЗ-ГАЗ 2012
  • Коссый Игорь Антонович
  • Анпилов Андрей Митрофанович
  • Бархударов Эдуард Михайлович
  • Грицинин Сергей Иванович
  • Давыдов Алексей Михайлович
  • Тактакишвили Мераб Иванович
  • Двоенко Александр Вилорьевич
  • Хабеев Ренат Рушанович
RU2513622C2
US 2003024806 A1, 06.02.2003
Устройство для аргонодуговой сварки вольфрамовыми электродами сильфонов из нержавеющей стали 1948
  • Бродский А.Я.
  • Дытченко В.В.
  • Кожевников Н.К.
SU83682A1
Способ ускоренного выращивания микобактерий туберкулеза 1958
  • Алексеева М.И.
  • Худадов Г.Д.
SU120309A1

RU 2 640 543 C1

Авторы

Давыдов Алексей Михайлович

Грицинин Сергей Иванович

Артемьев Константин Владимирович

Коссый Игорь Антонович

Двоенко Александр Вилорьевич

Лаврин Алексей Викторович

Хабеев Ренат Рушанович

Батанов Герман Михайлович

Сарксян Карен Агасевич

Харчев Николай Константинович

Даты

2018-01-09Публикация

2016-08-26Подача