ТЕСТ-СИСТЕМА ДЛЯ ОБНАРУЖЕНИЯ РНК ВИРУСА БОЛЕЗНИ ШМАЛЛЕНБЕРГ И СПОСОБ ВЫЯВЛЕНИЯ ГЕНОМА ВИРУСА БОЛЕЗНИ ШМАЛЛЕНБЕРГ. Российский патент 2014 года по МПК C12N15/11 C12N15/34 C12Q1/68 

Описание патента на изобретение RU2515916C2

Изобретение относится к ветеринарной вирусологии, а именно к средствам диагностики.

Болезнь Шмалленберг зарегистрирована среди крупного и мелкого рогатого скота на территории Германии, Нидерландов, Бельгии, Великобритании, Франции, Италии, Люксембурга, Испании [3].

Вирус болезни Шмалленберг является представителем рода Orthobunyavirus семейства Bunyaviridae. Показано, что вирус болезни Шмалленберг имеет значительную степень родства с представителями серогруппы Simbu. К наиболее близким по свойствам к вирусу болезни Шмалленберг относятся вирусы Shamonda (97% гомологии по S-сегменту генома), Aino (71% гомологии по М-сегменту) и Akabane (69% гомологии по L-сегменту) [2].

Установлена патогенность вируса болезни Шмалленберг для овец, коз и крупного рогатого скота. У крупного рогатого скота при острой форме болезни наблюдали лихорадку, снижение удоев молока (до 50%), потерю аппетита, иногда диарею. У мелкого рогатого скота клинических признаков болезни не наблюдали.

Особое значение играет инфекция плода. Если взрослая нетель или овцематка была инфицирована на ранней стадии стельности или суягности, то может произойти инфицирование плода, что приводит к серьезным последствиям: абортам, рождению недоношенных или мертвых плодов, а также ягнят, козлят и телят с различными пороками развития. В целом, клиническая картина очень схожа с таковой, наблюдаемой при болезни Акабане [1, 3].

В настоящий момент меры борьбы с болезнью Шмалленберг сводятся к мониторингу среди восприимчивых животных, изменению условий их содержания, карантину заболевших животных. В период активности насекомых-переносчиков необходимо обеспечить защиту животных от их укусов. В научных центрах Европы ведется экстренная работа по созданию необходимых диагностических тест-систем и разработке вакцины для борьбы с новой болезнью [4].

Разработан способ выявления вирусного генома методом обратной транскрипции-полимеразной цепной реакции (ОТ-ПЦР), основанная на амплификации фрагмента S-сегмента геномной РНК [2]. Однако в Российской Федерации методов и диагностических тест-систем для выявления генома вируса болезни Шмалленберг не разработано.

Таким образом, целью данного изобретения является разработка способа выявления генома вируса болезни Шмалленберг с помощью ОТ - ПЦР в реальном времени с использованием двух олигонуклеотидных праймеров и флуоресцентно-меченного зонда.

Поставленная цель достигается способом для обнаружения генома вируса болезни Шмалленберг в образцах крови, пробах органов от инфицированных животных, при котором вначале проводят синтез комплементарной ДНК (кДНК) на матрице вирусной РНК, а затем ее амплификацию.

Синтез кДНК проводят при температуре 42°С в течение 30 мин с праймером Schm L, а затем терминируют реакцию 5-минутным прогреванием реакционной смеси при температуре 88°С.

Полученную кДНК используют для проведения ПЦР в реальном времени с участием праймеров Schm U и Schm L и зонда Schm Z. Полученные фрагменты ДНК имеют размер, равный 129 п.о. Нуклеотидный состав используемых праймеров и зонда следующий:

Schm U 5'-CAA CCA GAA GAA GGC CAA GA-3'

Schm L 5'-TCTGGCACAGGATTTGAGAC-3'

Schm Z 5'-[Hex] CCC CAC CAA AAG TAA GAT CGA CAC [BHQ2]-3'

Температурный режим для проведения ПЦР включает следующие этапы: 2 мин предварительной денатурации при 94°С и 45 циклов амплификации (94°С - 10 сек, 60°С - 15 сек, 72°С - 15 сек).

Техническим результатом изобретения является повышение степени специфичности и чувствительности, а также сокращение времени проведения диагностической работы по обнаружению генома вируса в пробах органов и крови от больных животных.

Сущность изобретения состоит в том, что при помощи указанных праймеров (Schm U и Schm L) и зонда (Schm Z) проводят ОТ - ПЦР в реальном времени, позволяющую выявить геном вируса болезни Шмалленберг. При наличии в исследуемых образцах РНК вируса болезни Шмалленберг в ходе ПЦР синтезируется фрагмент ДНК размером 129 п.н.

Детекция продуктов амплификации осуществляется методом регистрации флуоресценции, генерируемой в результате разрушения гибридизационного зонда, содержащего на 5'-конце флуорофор HEX, а на 3'-конце - гаситель BHQ2. В отсутствие мишени флуорофор и гаситель сближены и наблюдается лишь незначительная флуоресценция, так как гаситель поглощает испускаемое флуорофором излучение. При накоплении в ходе ПЦР специфических продуктов зонд гибридизуется на ампликон, что ведет к его разрушению за счет 5'-экзонуклеазной активности Taq-полимеразы. В результате флуорофор отделяется от гасителя и его излучение может быть детектировано. Таким образом, увеличение флуоресценции прямо пропорционально количеству синтезированного ПЦР-продукта.

Существенным отличием данных праймеров и зонда является то, что они комплементарны консервативной области гена нуклеокапсидного белка N вируса болезни Шмалленберг и не комплементарны каким-либо участкам геномов других вирусов.

Изобретение иллюстрируется несколькими примерами.

Пример 1. Синтез и амплификация участка кДНК вируса болезни Шмалленберг.

Расчет первичной структуры олигонуклеотидных праймеров и зонда.

С помощью программы "BioEdit 7.0" выравнены доступные в базе данных GenBank нуклеотидные последовательности S-сегмента генома вирусов - представителей серогруппы Simbu: Akabane, Aino, Shamonda, Saphuperi, Douglas с последовательностью S - сегмента генома вируса болезни Шмалленберг (Schmallenberg virus), изолят ВН80/11-4 (код доступа НЕ 649914.1). В результате анализа построенного элайнмента внутри гена нуклеокапсидного белка N вируса болезни Шмалленберг выбран участок между 157 и 285 нуклеотидами, содержащий уникальные нуклеотидные последовательности. С помощью программы "Oligo 6.0" рассчитаны первичные структуры олигонуклеотидных праймеров, фланкирующих выбранный участок генома. Для детекции продуктов амплификации подобран олигонуклеотидный флуоресцентно-меченный зонд, комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров Schm U и Schm L (нуклеотидные позиции: 204-227).

С использованием программы "Oligo 6.0" описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР.

Для получения кДНК готовят и маркируют 0,6 см3 пробирки на N - количество образцов, включая отрицательные контроли. В пробирки вносят по 15 мкл реакционной смеси, включающей 4 мкл буфера для ревертазы, 1 мкл праймера Schm L (10 пкмоль/мкл), 0,3 мкл смеси дезоксинуклеозидтрифосфатов (дНТФ) (40 ммоль/мл), 0,15 мкл MMLV - ревертазы (200 ед./мкл), 9,5 мкл деионизированной воды; поверх смеси наслаивают 1 каплю (40-45 мкл) минерального масла. Далее под масло вносят 5 мкл исследуемой РНК и помещают пробирки в амплификатор со следующим температурным режимом:

42°С 30 мин 1 цикл 88°С 5 мин

После инкубации реакционную смесь используют как препарат кДНК. Для проведения ПЦР приготавливают реакционную смесь объемом 25 мкл, включающую по 1,5 мкл праймеров Schm U и Schm L (10 пкмоль/мкл), 0,3 мкл смеси дНТФ (40 ммоль/мл), 0,5 мкл MgCl2 (25 мМ), 5 мкл буфера для Taq-полимеразы, 0,15 мкл Taq-полимеразы (20 ед/мкл), 10 мкл деионизированной воды. Эту смесь вносят в заранее промаркированные пробирки по 15 мкл, наслаивают сверху каплю расплавленного воска и на воск наносят 10 мкл кДНК. Пробирки помещают в амплификатор со следующим температурным режимом:

94°С 2 мин 1 цикл 94°С 10 сек 45 циклов 60°С 15 сек 72°С 15 сек

В качестве положительного контроля использовали образцы референтной РНК вируса болезни Шмалленберг, предоставленные Институтом им.Ф.Леффлера, Германия, в качестве отрицательного контроля - деионизированную воду.

ПЦР в реальном времени проводили на детектирующем амплификаторе "Rotor Gene 6000" (Corbett Research, Австралия), измерение флуоресценции проводили при температуре 60°С (стадия отжига праймеров) по каналу "Yellow" (Hex). Результаты ПНР анализировали с помощью программного обеспечения амплификатора.

Результаты интерпретировали на основании наличия/отсутствия пересечения кривой флуоресценции с установленной на уровне 0,02 пороговой линией (Threshold). Образец считали положительным на наличие генома вируса болезни Шмалленберг, если кривая флуоресценции пересекала пороговую линию не позднее 40 цикла амплификации.

Пример 2. Определение специфичности ОТ-ПЦР в реальном времени.

Исследуемый материал (кровь, 10%-ная суспензия органов) в объеме 200 мкл вносят в 1,5 см3 пробирки, в которые предварительно внесено 800 мкл лизирующего буфера на основе гуанидинтиоционата. Пробирки перемешивают и инкубируют при комнатной температуре 5-10 мин. Затем добавляют 35 мкл нуклеосорбента, инкубируют при комнатной температуре 5 мин, периодически перемешивая смесь. После инкубации пробирки центрифугируют 15 сек при 7 тыс. об/мин, надосадочную жидкость отбрасывают. Добавляют 300 мкл отмывочного буфера, тщательно ресуспендируют сорбент, центрифугируют 30 сек при 7 тыс. об/мин, удаляют надосадочную жидкость. Дважды промывают сорбент 75%-ным этиловым спиртом и далее подсушивают 5 мин при температуре 56°С. К осадку добавляют 50 мкл элюирующего буфера, перемешивают и инкубируют 10 мин при температуре 56°С. Центрифугируют пробирки в течение 1 мин при 13 тыс. об/мин и переносят надосадочную жидкость в новые пробирки и используют в дальнейшем для синтеза кДНК.

Для оценки специфичности ОТ-ПЦР в реальном времени исследовали препараты РНК, выделенной из образцов, содержащих гетерологичные вирусы и кровь от интактных животных. При этом положительный результат получен только с референтной РНК вируса болезни Шмалленберг, что свидетельствует о специфичности праймеров и зонда, входящих в состав тест-системы.

Результаты ОТ-ПЦР в реальном времени Наименование биобразцов Шифр Ожидаемый результат Фактический результат РНК вируса болезни Шмалленберг, предоставленная Институтом им.Ф.Леффлера 1 + + Вирус болезни Найроби, шт. "ММ/К-05" 2 - - Вирус болезни Найроби, шт. "МК" 3 ~ - Вирус лихорадки долины Рифт, шт. "RVF - 113/09-ПС" 4 ~ - Вирус лихорадки долины Рифт, шт. "RVF (S) 15" 5 - - Вирус болезни Акабане, шт. "В8935" 6 - - Вирус болезни Акабане, шт. "Р" 7 - - 8 серотип вируса блютанга, шт. "NET-2007" 8 - - кровь интактной овцы 9 - - кровь интактной козы 10 - - кровь интактной коровы 11 - -

Пример 4. Определение аналитической чувствительности ОТ - ПЦР в реальном времени.

Аналитическую чувствительность метода определяли с использованием in vitro транскриптов, синтезированных на матрице рекомбинантной плазмиды со встройкой фрагмента генома вируса болезни Шмалленберг. Спектрофотометрически измеренная концентрация in vitro транскрибированной РНК составила 8,136 мг/мл, что соответствует 7,178*1012 копиям РНК в 1 мкл.

Десятикратные разведения (в трех повторах) препарата транскрибированной in vitro РНК известной концентрации использовали для определения аналитической чувствительности ОТ-ПЦР в реальном времени. Пределом чувствительности считали максимальное разведение, при котором регистрировали положительный результат. Рассчитанное значение аналитической чувствительности метода ОТ-ПЦР в режиме реального времени составило 7,178*105 копий РНК/мкл, что соответствует 3,698*106 копиям РНК в реакционной смеси.

Источники информации:

1. Gibbens, N. Schmallenberg virus: a novel viral disease in northern Europe / N.Gibbens // Vet. Rec. - 2012. - V.170, №2. - р.58.

2. Hoffmann, В. Novel orthobunyavirus in cattle, Europe, 2011 / В.Hoffmann [et al.] // Emerg. Infect. Dis. [serial on the Internet]. - 2012. - V.18, №3. / Centers for diseases control and prevention. - Режим доступа: http://www.nc.cdc., свободный. - Загл. с экрана.

3. Weekly disease information/WAHID Interface / OIE, 2011-2012. - Режим доступа: http://www.oie.int, свободный. - Загл. с экрана.

4. OIE technical factsheet/OIE, 2012. Режим доступа: http://www.oie.int, свободный. - Загл. с экрана.

Похожие патенты RU2515916C2

название год авторы номер документа
СИНТЕТИЧЕСКИЕ ОЛИГОНУКЛЕОТИДНЫЕ ПРАЙМЕРЫ - ЗОНД И СПОСОБ ДЛЯ ВЫЯВЛЕНИЯ ГЕНОМОВ 1-ГО, 4-ГО, 16-ГО СЕРОТИПОВ ВИРУСА БЛЮТАНГА МЕТОДОМ ОТ-ПЦР В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ 2011
  • Панферова Агнеса Владимировна
  • Цыбанов Содном Жемьянович
  • Гузалова Анна Григорьевна
  • Луницин Андрей Владимирович
  • Колбасов Денис Владимирович
RU2481404C1
Способ выявления РНК вируса болезни Шмалленберга у сельскохозяйственных животных 2018
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Котельникова Александра Андреевна
  • Василевич Федор Иванович
  • Донник Ирина Михайловна
  • Дробин Юрий Дмитриевич
  • Гринь Светлана Анатольевна
  • Лысенко Александр Анатолиевич
  • Кривоногова Анна Сергеевна
  • Кривонос Роман Анатольевич
  • Дорожкин Василий Иванович
  • Шевкопляс Владимир Николаевич
  • Семененко Марина Петровна
  • Кощаев Андрей Георгиевич
  • Шкуратова Ирина Алексеевна
  • Дайбова Любовь Анатольевна
RU2696306C1
Тест-система для выявления РНК вируса болезни Шмалленберга у сельскохозяйственных животных 2018
  • Котельникова Александра Андреевна
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Черных Олег Юрьевич
  • Дробин Юрий Дмитриевич
  • Донник Ирина Михайловна
  • Уша Борис Вениаминович
  • Лысенко Александр Анатолиевич
  • Клименко Александр Иванович
  • Кривонос Роман Анатольевич
  • Юлдашбаев Юсупжан Артыкович
  • Гулюкин Алексей Михайлович
  • Шевкопляс Владимир Николаевич
  • Кривоногова Анна Сергеевна
  • Кощаев Андрей Георгиевич
  • Дельцов Александр Александрович
  • Дайбова Любовь Анатольевна
RU2694719C1
СИНТЕТИЧЕСКИЕ ОЛИГОНУКЛЕОТИДНЫЕ ПРАЙМЕРЫ И ИХ ИСПОЛЬЗОВАНИЕ В СПОСОБЕ ВЫЯВЛЕНИЯ И ДИФФЕРЕНЦИАЦИИ ГЕНОМА ВАКЦИННОГО ШТАММА В-82 ОТ ПОЛЕВЫХ ИЗОЛЯТОВ ВИРУСА МИКСОМЫ КРОЛИКОВ МЕТОДОМ ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ 2013
  • Синдрякова Ирина Петровна
  • Цыбанов Содном Жамьянович
  • Колбасов Денис Владимирович
RU2549705C1
Способ выявления и генотипирования РНК вируса репродуктивно-респираторного синдрома свиней 2018
  • Баннов Василий Александрович
  • Черных Олег Юрьевич
  • Малышев Денис Владиславович
  • Котельникова Александра Андреевна
  • Дунин Иван Михайлович
  • Дробин Юрий Дмитриевич
  • Амерханов Харон Адиевич
  • Донник Ирина Михайловна
  • Дорожкин Василий Иванович
  • Лысенко Александр Анатолиевич
  • Племяшов Кирилл Владимирович
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Бахарев Алексей Александрович
  • Кощаев Андрей Георгиевич
  • Коломиец Сергей Николаевич
  • Дайбова Любовь Анатольевна
  • Кривоногова Анна Сергеевна
RU2703394C1
ОЛИГОНУКЛЕОТИДНЫЕ ПРАЙМЕРЫ, ФЛУОРЕСЦЕНТНЫЙ ЗОНД И СПОСОБ ДЛЯ ВЫЯВЛЕНИЯ РНК ВИРУСА БОЛЕЗНИ ИБАРАКИ МЕТОДОМ ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ 2013
  • Аронова Елена Владимировна
  • Калабеков Исмаил Мусаевич
  • Цыбанов Содном Жамьянович
  • Луницин Андрей Владимирович
RU2540142C2
Способ выявления генома возбудителя вируса парагриппа 3 типа у крупного рогатого скота 2018
  • Черных Олег Юрьевич
  • Сочнев Василий Васильевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Дробин Юрий Дмитриевич
  • Донник Ирина Михайловна
  • Иванов Аркадий Васильевич
  • Лысенко Александр Анатольевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Кощаев Андрей Георгиевич
  • Калошкина Инна Муратовна
  • Кулакова Анна Леонидовна
RU2696069C2
ОЛИГОНУКЛЕОТИДНЫЕ ПРАЙМЕРЫ, СПОСОБ И ТЕСТ-СИСТЕМА ДЛЯ ВЫЯВЛЕНИЯ ГЕНОМА ВИРУСА БОЛЕЗНИ НАЙРОБИ ОВЕЦ МЕТОДОМ ОБРАТНОЙ ТРАНСКРИПЦИИ - ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ 2009
  • Сальников Николай Игоревич
  • Малоголовкин Александр Сергеевич
  • Цыбанов Содном Жамьянович
  • Колбасов Денис Владимирович
  • Гузалова Анна Григорьевна
RU2416647C1
ОЛИГОНУКЛЕОТИДНЫЕ ПРАЙМЕРЫ, ДНК-ЗОНД И СПОСОБ ДЛЯ ИДЕНТИФИКАЦИИ ВИРУСА ИНФЕКЦИОННОЙ АНЕМИИ ЛОШАДЕЙ МЕТОДОМ ПЦР ИЛИ ОТ-ПЦР В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ 2013
  • Герасимова Надежда Николаевна
  • Панферова Агнеса Владимировна
  • Колбасова Ольга Львовна
  • Колбасов Денис Владимирович
RU2548799C1
Тест-система для выявления и генотипирования РНК вируса репродуктивно-респираторного синдрома свиней 2018
  • Черных Олег Юрьевич
  • Котельникова Александра Андреевна
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Дробин Юрий Дмитриевич
  • Донник Ирина Михайловна
  • Стекольников Анатолий Александрович
  • Уша Борис Вениаминович
  • Лысенко Александр Анатолиевич
  • Морозов Виталий Юрьевич
  • Кривонос Роман Анатольевич
  • Исаева Альбина Геннадиевна
  • Шевкопляс Владимир Николаевич
  • Кощаев Андрей Георгиевич
  • Барашкин Михаил Иванович
  • Дайбова Любовь Анатольевна
  • Кузьминова Елена Васильевна
  • Винокурова Диана Петровна
RU2703401C1

Реферат патента 2014 года ТЕСТ-СИСТЕМА ДЛЯ ОБНАРУЖЕНИЯ РНК ВИРУСА БОЛЕЗНИ ШМАЛЛЕНБЕРГ И СПОСОБ ВЫЯВЛЕНИЯ ГЕНОМА ВИРУСА БОЛЕЗНИ ШМАЛЛЕНБЕРГ.

Изобретение относится к области ветеринарной вирусологии и касается тест-системы и способа для обнаружения РНК вируса болезни Шмалленберг. Предложенная тест-система включает праймер Schm U, имеющий нуклеотидную последовательность 5'-САА ССА GAA GAA GGC САА GA-3', праймер Schm L, имеющий нуклеотидную последовательность 5'-TCT GGC АСА GGA TTT GAG AC-3' и зонд Schm Z, имеющий последовательность 5'-[Hex] CCC CAC САА AAG TAA GAT CGA CAC [BHQ2]-3'. Предложенный способ предусматривает выделение РНК из биологического материала, постановку полимеразной цепной реакции с использованием указанных праймеров и зонда и амплификацию РНК вируса с детекцией продуктов амплификации в реальном времени. Интерпретацию результатов проводят на основании наличия/отсутствия пересечения кривой флуоресценции с пороговой линией (Threshold). Представленные изобретения могут быть использованы в ветеринарной вирусологии для выявления генома вируса болезни Шмалленберг. 2 н.п. ф-лы, 4 пр.

Формула изобретения RU 2 515 916 C2

1.Тест-система для обнаружения РНК вируса болезни Шмалленберг, путем проведения полимеразной цепной реакции в реальном времени, включающая праймер Schm U, имеющий нуклеотидную последовательность 5'-САА ССА gAA gAA ggC CAA gA-3', праймер Schm L, имеющий нуклеотидную последовательность 5'-TCT ggC АСА ggA TTT gAg AC-3', и зонд Schm Z, имеющий последовательность 5'-[Hex] CCC CAC CAA AAg ТАА gAT CgA CAC [BHQ2]-3'.

2. Способ выявления генома вируса болезни Шмалленберг, включающий выделение РНК из биологического материала, постановку полимеразной цепной реакции с использованием олигонуклеотидных праймеров и флуоресцентно-меченного зонда, амплификацию РНК вируса с детекцией продуктов амплификации в реальном времени, отличающийся тем, что синтез кДНК проводят при температуре 42°С в течение 30 мин с праймером Schm L 5'-TCT ggC АСА ggA TTT gAg AC-3', a затем терминируют реакцию 5-минутным прогреванием реакционной смеси при температуре 88°С, далее полученную кДНК используют для проведения ОТ-ПЦР с участием пары праймеров Schm U 5'-САА ССА gAA gAA ggC CAA gA-3' и Schm L 5'-TCT ggC АСА ggA TTT gAg AC-3'и зонда Schm Z 5'-[Hex] CCC CAC CAA AAg ТАА gAT CgA CAC [BHQ2]-3', при этом температурный режим ПЦР включает следующие этапы: 2 мин предварительной денатурации при 94°С и 45 циклов амплификации (94°С - 10 сек, 60°С - 15 сек, 72°С - 15 сек), детекцию флуоресценции проводят при температуре 60°С по каналу "Yellow" (Hex), а интерпретацию результатов на основании наличия/отсутствия пересечения кривой флуоресценции с пороговой линией (Threshold).

Документы, цитированные в отчете о поиске Патент 2014 года RU2515916C2

BILK S et al., Organ distribution of Schmallenberg virus RNA in malformed newborns, Vet Microbiol., Epub 2012 Mar 30, Vol.159, p.p.236-8
Schmallenberg virus genes for nucleocapsid protein and non-structural protein, segment S, genomic RNA, isolate BH80/11-4, GenBank: HE649914.1, 26.03.2012, найдено в Интернет , 01.03.2013
Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
ПЦР),

RU 2 515 916 C2

Авторы

Никитина Елена Григорьевна

Сальников Николай Игоревич

Гузалова Анна Григорьевна

Цыбанов Содном Жемьянович

Луницин Андрей Владимирович

Колбасов Денис Владимирович

Даты

2014-05-20Публикация

2012-06-13Подача