Изобретение относится к области цветной металлургии, в частности, к способам переработки титансодержащего сырья для получения концентрата диоксида титана, который может быть использован в качестве компонента обмазки сварочных электродов.
Известен способ автоклавного выщелачивания титанового шлака, содержащего 92,5% TiO2, оксиды железа, кремния и алюминия, включающий выщелачивание шлака в 10-молярном растворе NaOH в течение 4 часов при температуре 220°C и отношении ж:т=4:1, охлаждение пульпы, фильтрацию, промывку и сушку осадка на основе Na2Ti3O8, обработку осадка соляной кислотой в течение 5 часов при температуре 100°C, pH 0,2 и отношении ж:т=150:1 с получением концентрата диоксида титана, содержащего 99,4% TiO2 (Yongjie Zhang, Tao Oi, Yi Zhang. Hydrometallurgy. 2009, 96, 52-56).
Недостатком способа является сложность его осуществления из-за использования автоклавного оборудования и применения больших объемов соляной кислоты.
Наиболее близким по технической сущности к предлагаемому изобретению является принятый за прототип способ переработки титанового шлака, содержащего (%): TiO2 - 72,0; Feобщ - 12,65; SiO2 - 9,0; Al2O3 - 1,8, включающий смешивание шлака с кальцинированной содой в весовом соотношении Na2CO3:шлак=0,55:1, спекание смеси при температуре 850°C в течение 1 часа, выщелачивание спека в воде с получением железо-титансодержащего осадка, выщелачивание последнего в растворе 20% соляной кислоты при температуре кипения в течение 1 часа с переводом железа в раствор, фильтрацию пульпы с отделением кека, содержащего (%): TiO2 - 87,5; SiO2 - 9,25; Feобщ - 0,05; Al2O3 - 0,75, обработку кека в 2-молярном растворе NaOH в течение 1 часа при температуре 60-70°C и отношении ж:т=3:1 для очистки от диоксида кремния (извлечение диоксида кремния - 79%), отделение осадка и прокалку его при температуре 900°C с получением концентрата диоксида титана, содержащего (%): TiO2 - 97,0; SiO2 - 1,9; Feобщ - 0,05; Al2O3 - 0,25; CaO - 0,3; MgO - 0,15; Na2O - 0,88, извлечение титана из шлака - 97,35% (T.A. Lasheen. Hydrometallurgy. 2008, 93, 124-128).
Недостатком способа является сложность технологического процесса, обусловленная тем, что при проведении спекания шлака с кальцинированной содой, взятых в отношении Na2CO3:шлак=0,55:1, в спеке образуются ферротитанат натрия (NaFeTiO4) и нерастворимый в воде силикотитанат натрия (Na2TiSiO5). В результате этого при выщелачивании водой весь диоксид кремния остается в твердой фазе и при очистке осадка от железа в солянокислом растворе диоксид кремния переходит в гелеобразное состояние и этим резко снижает скорость фильтрации пульпы и затрудняет отмывку осадка от примесей, поэтому для очистки концентрата диоксида титана от диоксида кремния необходим дополнительный передел - обработка титансодержащего кека раствором NaOH с переводом диоксида кремния в раствор.
Техническим результатом заявляемого изобретения является упрощение технологического процесса за счет уменьшения количества переделов и повышения скорости фильтрации пульпы после солянокислого выщелачивания.
Указанный результат достигается тем, что в способе переработки титановых шлаков, включающем смешивание исходного титанового шлака с кальцинированной содой, спекание шихты и последовательное выщелачивание полученного спека сначала в воде с получением железо-титансодержащего осадка, а затем в солянокислом растворе с получением титансодержащего кека, фильтрацию пульпы с отделением осадка и получение концентрата диоксида титана, согласно изобретению спекание исходного шлака с кальцинированной содой ведут при температуре 900°C в весовом отношении Na2CO3:шлак, равном (0,98-1,15):1, при этом выщелачивание спека в воде осуществляют с переводом силиката натрия в раствор и получение концентрата диоксида титана ведут прокаливанием осадка, полученного после солянокислотного выщелачивания, а в качестве исходного титанового шлака используют шлак восстановительной плавки ильменита.
При проведении спекания исходного шлака с кальцинированной содой при температуре 900°C в весовом отношении Na2CO3:шлак, равном (0,98-1,15):1, происходит превращение основного компонента шлака (TiO2) в нерастворимый в воде титанат натрия - Na2TiO3, а диоксида кремния в растворимый силикат натрия, который переходит в раствор при водном выщелачивании спека, что позволяет не проводить дополнительный передел для очистки титансодержащего кека от диоксида кремния и облегчает фильтрацию пульпы, т.к. при дальнейшем выщелачивании спека в солянокислом растворе не происходит образования геля.
Проведение спекания при весовом отношении Na2CO3:шлак менее 0,98 не обеспечивает выщелачивания значительной части диоксида кремния в воде, что приводит при последующей обработке кека в солянокислом растворе к гелеобразованию и снижению скорости фильтрации.
Увеличение содержания соды в шихте до весового отношения Na2CO3: шлак более 1,15 нецелесообразно из-за оплавления избыточного количества соды и образования прочных спеков и настылей на футеровке печи, что нарушает проведение технологического процесса.
При температуре спекания шихты менее 900°C снижается степень превращения диоксида кремния в силикат натрия и, соответственно, уменьшается степень водного выщелачивания диоксида кремния. Нагрев шихты выше 900°C ведет к оплавлению соды и образованию настылей в печи.
Способ осуществляли следующим образом.
Титановый шлак, содержащий (%): TiO2 - 82,3; Feобщ - 4,97; SiO2 - 2,62; Al2O3 - 5,89; Mnобщ - 0,87; CaO - 0,35; MgO - 0,30; Cr2O3 - 0,62, измельчали до размера частиц менее 50 мкм, смешивали с кальцинированной содой, взятой в отношении Na2CO3:шлак, равном (0,98-1,15):1, и спекали при температуре 900°C в течение 1 часа. Полученный спек измельчали и выщелачивали в воде при температуре 80°C в течение 1 часа с получением железо-титансодержащего осадка и раствора, содержащего силикат и хромат натрия. Пульпу фильтровали под вакуумом через воронку Бюхнера. Осадок, содержащий титанат натрия, гидроксид железа и частично гидроксид кремния, обрабатывали солянокислым раствором (20% HCl) при ж:т=3:1 в течение 0,5 часа при температуре кипения. Раствор, содержащий хлорид железа, отделяли от осадка, содержащего ортотитановую кислоту (H4TiO4) и остаток диоксида кремния. Осадок сушили и прокаливали при температуре 900°C в течение 1 часа с получением концентрата диоксида титана, содержащего (%): TiO2 - 97,15-97,25; Feобщ - 0,70-0,98; SiO2 - 1,00-1,31; Al2O3 - 0,06; Mnобщ - 0,03; CaO - 0,07-0,10; MgO - 0,07; Na2O - 0,1-0,28.
Результаты сравнительных испытаний известного и предлагаемого способов приведены в таблице, из которой видно, что по предлагаемому способу скорость фильтрации пульпы после солянокислого выщелачивания увеличилась до 180-240 л/м2·час по сравнению с 3,5 л/м2·час по прототипу. Извлечение диоксида титана в концентрат по предлагаемому способу составило 97,3-97,7% с получением концентрата, содержащего 97,15-97,25% TiO2 без проведения операции дополнительной очистки.
Основным преимуществом предлагаемого способа получения концентрата диоксида титана является упрощение технологического процесса за счет:
- сокращения этапов передела за счет исключения дополнительной очистки концентрата диоксида титана от диоксида кремния в растворе гидрооксида натрия;
- повышения в 51-68 раз скорости фильтрации пульпы после солянокислого выщелачивания и, соответственно, повышения производительности реактора выщелачивания.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ИСКУССТВЕННОГО РУТИЛА ИЗ ЛЕЙКОКСЕНОВОГО КОНЦЕНТРАТА | 2002 |
|
RU2216517C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ АЛЮМОСИЛИКАТНОГО СЫРЬЯ | 2007 |
|
RU2373152C2 |
СПОСОБ ПЕРЕРАБОТКИ ОТВАЛЬНОГО ШЛАМА | 2008 |
|
RU2370551C1 |
СПОСОБ ПЕРЕРАБОТКИ ТИТАН-КРЕМНИЙСОДЕРЖАЩИХ КОНЦЕНТРАТОВ С ПОЛУЧЕНИЕМ ИСКУССТВЕННОГО РУТИЛА | 2007 |
|
RU2336348C1 |
СПОСОБ ПЕРЕРАБОТКИ ТИТАНОМАГНЕТИТОВОГО КОНЦЕНТРАТА | 2009 |
|
RU2394926C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ТИТАНА ИЗ КВАРЦ-ЛЕЙКОКСЕНОВОГО КОНЦЕНТРАТА | 2022 |
|
RU2795543C1 |
СПОСОБ ПЕРЕРАБОТКИ ПЫЛЕВЫХ ОТХОДОВ, ОБРАЗУЮЩИХСЯ ПРИ ОЧИСТКЕ ГАЗОВ РУДНО-ТЕРМИЧЕСКОЙ ПЕЧИ | 2018 |
|
RU2694862C1 |
Способ получения концентрата лейкоксенового для использования в качестве титаноносного сырья | 2019 |
|
RU2728088C1 |
СПОСОБ ПЕРЕРАБОТКИ КВАРЦ-ЛЕЙКОКСЕНОВОГО КОНЦЕНТРАТА | 2004 |
|
RU2262544C1 |
СПОСОБ ПОЛУЧЕНИЯ ОКАТЫШЕЙ ДЛЯ ВОССТАНОВИТЕЛЬНОЙ ПЛАВКИ | 2010 |
|
RU2459879C2 |
Изобретение относится к способу переработки титановых шлаков с получением концентрата диоксида титана, который может быть использован в качестве компонента обмазки сварочных электродов. Способ включает смешивание исходного титансодержащего шлака с кальцинированной содой, спекание шихты и последовательное выщелачивание полученного спека сначала в воде с получением железо-титансодержащего осадка, а затем в солянокислом растворе с получением титансодержащего осадка. Затем проводят фильтрацию пульпы с отделением осадка и получение концентрата диоксида титана. При этом спекание исходного шлака с кальцинированной содой ведут при температуре 900°С в весовом отношении Na2СО3:шлак, равном (0,98-1,15):1. Выщелачивание спека в воде осуществляют с переводом силиката натрия в раствор, а получение концентрата диоксида титана ведут прокаливанием осадка, полученного после солянокислотного выщелачивания. При этом в качестве исходного титанового шлака используют шлак восстановительной плавки ильменита. Техническим результатом является упрощение технологического процесса и повышение скорости фильтрации пульпы после солянокислотного выщелачивания. 1 з.п. ф-лы, 1 табл.
1. Способ переработки титановых шлаков, включающий смешивание исходного титансодержащего шлака с кальцинированной содой, спекание шихты и последовательное выщелачивание полученного спека сначала в воде с получением железо-титансодержащего осадка, а затем в солянокислом растворе с получением титансодержащего осадка, фильтрацию пульпы с отделением осадка и получение концентрата диоксида титана, отличающийся тем, что спекание исходного шлака с кальцинированной содой ведут при температуре 900°С в весовом отношении Na2СО3:шлак, равном (0,98-1,15):1, при этом выщелачивание спека в воде осуществляют с переводом силиката натрия в раствор, а получение концентрата диоксида титана ведут прокаливанием осадка, полученного после солянокислотного выщелачивания.
2. Способ по п.1, отличающийся тем, что в качестве исходного титанового шлака используют шлак восстановительной плавки ильменита, переработке подвергают шлаки восстановительной плавки ильменита.
T.A | |||
LASHEEN, журнал Hydrometallurgy | |||
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ ТИТАНОВАНАДИЕВЫХ ШЛАКОВ | 2008 |
|
RU2365649C1 |
СПОСОБ ПОЛУЧЕНИЯ ИСКУССТВЕННОГО РУТИЛА ИЗ ЛЕЙКОКСЕНОВОГО КОНЦЕНТРАТА | 2002 |
|
RU2216517C1 |
и др.), 20.11.2003 | |||
US 3929461 А (FERROVANADIUM CORP N), 30.12.1975 | |||
DE 3536495 А1 (ELEKTROMETALLURGIE GMBH), 16.04.1987 | |||
US 3753681 А (CONTINENTAL ORE CORP), 21.08.1973 | |||
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ ВЫСОКОИЗВЕСТКОВЫХ ШЛАКОВ | 2005 |
|
RU2299254C1 |
JP 48022909 В (CONTINENTALE ERZ GES M B H), 10.07.1973 |
Авторы
Даты
2014-06-10—Публикация
2012-11-20—Подача