Предлагаемое техническое решение относится к области оборонной техники, в частности к мобильным зенитно-ракетным комплексам (ЗРК), и может быть использовано для организации противовоздушной обороны войск и военных объектов от поражения средств воздушного нападения противника.
В структуре современной противовоздушной обороны (ПВО) радиолокационная станция (РЛС) является основным и практически единственным источником информации о воздушной обстановке средств воздушного нападения (СВН), причем тактический порядок современной авиации совместно с баллистическими ракетами и крылатыми ракетами, предназначенными для прорыва ПВО, обязательно предусматривает огневое подавление ПВО, так как РЛС обеспечивает контроль зоны ответственности ПВО и выдачи целеуказания радиолокационным средствам активного наведения - ЗРК и истребительной авиации.
Известен ЗРК «Кроталь - НГ» (см. Современные зенитные и противоракетные комплексы и их применение в составе систем ПВО/ПРО (Аналитический обзор по материалам зарубежных информационных источников). Изд. Научно-информационный центр ГосНИИАС. М.: 2011 г.), содержащий СОЦ, СНР, ОЭС и ПУ на 8 ЗУР VT-1 в ТПК, размещенных на одной самоходной боевой машине. Комплекс обладает повышенной автоматизацией боевой работы, живучестью в условиях применения ПРР и радиоэлектронного подавления и более высокой производительностью за счет увеличения боезапаса. Наличие двух параллельно действующих РЛС обнаружения и сопровождения позволяет комплексу одновременно обстреливать несколько целей, однако размещение всех систем на одном шасси требует большого времени развертывания комплекса, что увеличивает время реакции и снижает эффект его применения.
Известен ЗРК SAMT/T (см. Современные зенитные и противоракетные комплексы и их применение в составе систем ПВО/ПРО (Аналитический обзор по материалам зарубежных информационных источников). Изд. Научно-информационный центр ГосНИИАС, М.: 2011 г.), состоящий из МФ РЛС кругового обзора «Арабель» с АФАР, шести пусковых установок с восемью ЗУР «Астер-30», командного пункта. Комплекс многоцелевой и расположен на нескольких колесных машинах.
Известен ЗРК MEADS (см. Современные зенитные и противоракетные комплексы и их применение в составе систем ПВО/ПРО (Аналитический обзор по материалам зарубежных информационных источников). Изд. Научно-информационный центр ГосНИИАС, М.: 2011 г.), состоящий из МФ РЛС секторного обнаружения, командного пункта и пусковой установки с ЗУР РАС-3.
Известен ЗРК SLAMRAAM (см. Современные зенитные и противоракетные комплексы и их применение в составе систем ПВО/ПРО (Аналитический обзор по материалам зарубежных информационных источников). Изд. Научно-информационный центр ГосНИИАС, М.: 2011 г.), состоящий из мобильных пусковых установок, предназначенных для размещения, транспортировки, предварительного наведения и наклонного пуска до шести ЗУР АIМ-120 В\С, трехкоординатной МФ РЛС кругового обзора «Сентиел» AN\MPQ-64, пункта управления огнем, смонтированного на шасси автомобиля «Хаммер».
Известен ЗРК NASAMS II (см. Современные зенитные и противоракетные комплексы и их применение в составе систем ПВО/ПРО (Аналитический обзор по материалам зарубежных информационных источников). Изд. Научно-информационный центр ГосНИИАС, М.: 2011 г.), состоящий из мобильных пусковых установок с шестью ракетами в транспортно-пусковых контейнерах, МФ РЛС AN\MPQ-64, обеспечивающей обнаружение, опознавание и сопровождение до 60 воздушных целей, а также наведение на выбранные цели до трех ЗУР.
Приведенные аналоги обладают тем или иным из следующих основных недостатков:
- раздельное размещение РЛС обнаружения, сопровождения, подсвета целей для наведения ракет и пусковой установки с ракетами на нескольких боевых средствах ЗРК;
- существенное ухудшение тактико-технических характеристик ЗРК в сложной помеховой обстановке.
Наиболее близкой по технической сущности и достигаемому результату является самоходная огневая установка обнаружения, сопровождения, наведения и пуска ракет зенитного ракетного комплекса средней дальности, обеспечивающей эффективную боевую работу в условиях сложной помеховой обстановки (см. патент RU №2333450 МПК F41H 11/02, 2008 г.), содержащая первую антенную систему, выход которой соединен с первым входом радиолокационной станции, первый выход которой подключен к первому входу цифровой вычислительной системы. Первый выход цифровой вычислительной системы подключен к поворотной пусковой установке с ракетами, на которой установлена гироскопическая система измерения углов курса, крена и тангажа, вход которой подключен к выходу системы навигации, топопривязки и ориентирования, размещенной на самоходном шасси. Выход гироскопической системы измерения углов курса, крена и тангажа соединен со вторым входом цифровой вычислительной системы, второй выход цифровой вычислительной системы подключен ко второму входу радиолокационной станции, второй выход которой соединен с входом первой антенной системы, выход второй антенной системы соединен с входом приемного устройства, выход которого подключен к первому входу интеллектуальной системы, выход интеллектуальной системы соединен с третьим входом цифровой вычислительной системы, третий выход которой подключен ко второму входу интеллектуальной системы.
Недостатком этого технического решения является существенное ухудшение тактико-технических характеристик ЗРК в помеховой обстановке.
Техническим результатом предлагаемого изобретения является улучшение тактико-технических характеристик самоходной огневой установки в помеховой обстановке
Сущность предлагаемого изобретения состоит в том, что самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности содержит первую антенную систему, радиолокационную станцию, цифровую вычислительную систему, поворотную пусковую установку с ракетами, гироскопическую систему измерения углов курса, крена и тангажа, систему навигации, топопривязки и ориентирования, вторую антенную систему, приемное устройство, интеллектуальную систему. Выход первой антенной системы соединен с первым входом радиолокационной станции, первый выход которой подключен к первому входу цифровой вычислительной системы, первый выход которой подключен к поворотной пусковой установке с ракетами, на которой установлена гироскопическая система измерения углов курса, крена и тангажа, вход которой подключен к выходу системы навигации, топопривязки и ориентирования, размещенной на самоходном шасси, а выход гироскопической системы измерения углов курса, крена и тангажа соединен со вторым входом цифровой вычислительной системы, второй выход цифровой вычислительной системы подключен ко второму входу радиолокационной станции, второй выход которой соединен с входом первой антенной системы, выход второй антенной системы соединен с входом приемного устройства, выход приемного устройства подключен к первому входу интеллектуальной системы, выход интеллектуальной системы соединен с третьим входом цифровой вычислительной системы, третий выход которой подключен ко второму входу интеллектуальной системы.
Новым в предлагаемом техническом решении является введение оптико-электронной системы (ОЭС), лазерного дальномера (ЛД) и устройства сопряжения (УС). Выход ОЭС соединен со входом УС, выход УС подключен к третьему входу интеллектуальной системы, выход ЛД соединен с четвертым входом интеллектуальной системы.
На фиг.1 изображены структурная схема самоходной огневой установки обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности.
На фиг.2 представлена функциональная схема самоходной огневой установки обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности.
Самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности (СОУ) содержит первую антенную систему 1, радиолокационную станцию 2, цифровую вычислительную систему (ЦВС) 3, поворотную пусковую установку с ракетами (ПУ) 4, причем на поворотной пусковой установке с ракетами 4 размещена гироскопическая система измерения углов курса, крена и тангажа (ГС) 6, необходимая для стабилизации луча первой антенной системы 1, вторую антенную систему 7. На самоходном шасси размещены система навигации, топопривязки и ориентирования (СНТО) 5, приемное устройство 8, интеллектуальная система 9, лазерный дальномер 10, оптико-электронная система 11 и устройство сопряжения 12.
Выход первой антенной системы 1 соединен с первым входом радиолокационной станции 2, первый выход которой подключен к первому входу цифровой вычислительной системы 3. Первый выход цифровой вычислительной системы 3 подключен к поворотной пусковой установке с ракетами 4, на которой установлена гироскопическая система измерения углов курса, крена и тангажа 6, вход которой подключен к выходу системы навигации, топопривязки и ориентирования 5, размещенной на самоходном шасси. Выход гироскопической системы измерения углов курса, крена и тангажа 6 соединен со вторым входом цифровой вычислительной системы 3, второй выход цифровой вычислительной системы 3 подключен ко второму входу радиолокационной станции 2, второй выход которой соединен с входом первой антенной системы 1. Выход второй антенной системы 7 соединен с входом приемного устройства 8, выход приемного устройств 8 подключен к первому входу интеллектуальной системы 9, выход интеллектуальной системы 9 соединен с третьим входом цифровой вычислительной системы 3, третий выход которой подключен ко второму входу интеллектуальной системы 9, выход лазерного дальномера 10 соединен с третьим входом интеллектуальной системы 9, а выход оптико-электронной системы 11 через устройство сопряжения 12 соединен с четвертым входом интеллектуальной системы 9.
Самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности (СОУ) работает следующим образом.
После установки СОУ на боевую позицию из системы навигации, топопривязки и ориентирования 5 в гироскопическую систему измерения углов курса, крена и тангажа 6, ЦВС 3 вводится значение курсового угла СОУ (угол между продольной осью СОУ и направлением на север). Курсовой угол СОУ используется в гироскопической системе измерения углов курса, крена и тангажа 6 в качестве начальных условий и в процессе дальнейшей работы гироскопическая система измерения углов курса, крена и тангажа 6 выдает значение курса с учетом этого угла. В ЦВС курсовой угол СОУ используется в сеансах коррекции для расчета угла ψрасч, где ψрасч - рассчитанный курсовой угол.
Сигналы с выхода первой антенной системы 1 выдаются на вход РЛС 2, которая осуществляет обнаружение, захват, сопровождение и подсвет целей.
После усиления и преобразования сигналы целей выдаются с первого выхода РЛС 2 на первый вход ЦВС 3, в которой производится формирование сигналов управления ПУ 4 для выработки углов упреждения и формирование сигналов наведения ракеты. Сформированные сигналы выдаются с первого выхода ЦВС 3 на вход ПУ 4.
На ПУ 4 установлена гироскопическая система измерения углов курса, крена и тангажа 6, необходимая для стабилизации луча первой антенной системы 1 в пространстве при поворотах ПУ 4 в горизонтальной плоскости и при наличии кренов. Измеренные значения углов курса с выхода гироскопической системы измерения углов курса, крена и тангажа угловых координат 6 ψизм, подаются на второй вход ЦВС 3, где ψизм - измеренный в горизонтальной плоскости курсовой угол СОУ.
После усреднения вычисляется разность Δ=ψизм-ψрасч, которая используется в ЦВС для стабилизации луча первой антенной системы 1.
Вторая антенная система 7, приемное устройство 8 и интеллектуальная система 9 обеспечивает эффективную боевую работу самоходной огневой установки в условиях сложной помеховой обстановки.
Когда уровень помехи достигает критического значения для СВЧ элементов радиолокационных приемных устройств (анализ уровня помехи осуществляется с использованием интеллектуальной системы), интеллектуальная система формирует команду на включение режима обнаружения и сопровождения цели с использованием оптико-электронной системы и измерения дальности до цели с помощью лазерного дальномера.
Обучение ИС осуществляется с использованием известных методов и способов противодействия помехам в радиолокации (см. Юдин Л.М., Фомичев К.И. Системы радиоэлектронного противодействия. Запоминание высокочастотных сигналов. - Электроника, НТБ, 1999, Вакин С.А., Шустов Л.Н. Основы радиоэлектронной борьбы. ВВИА им. Проф. Н.Е.Жуковского, 1998, Палий А.И. Радиоэлектронная борьба. - М.: Воениздат, 1981, Вакин С.А., Шустов Л.Н. Основы радиопротиводействия и радиотехнической разведки. - М.: Сов. радио, 1968., Тузов Г.И. Помехозащищенность радиосистем со сложными сигналами. - М.: Радио и связь, 1985, Защита от радиопомех. Под ред. М.В.Максимова. М.: Советское радио. 1976, Гуткин Л.С. Теория оптимальных методов радиоприема при флуактационных помехах. М.: Сов. радио, 1972 и др.), алгоритмы различных методов и способов защиты от различных классов помех хранятся в ЦВС и включаются по команде от ИС.
Известно (см. Перунов Ю.М., Фомичев К.И., Юдин Л.М. Радиоэлектронное подавление информационных каналов систем управления оружием М.: «Радиотехника», 2003. - стр.26-29), что основу методов радиоэлектронного подавления (РЭП) РЛС СОУ составляют активные и пассивные помехи, нацеленные на создание маскирующего или дезинформирующего эффекта. Помимо них, к основным методам РЭП относятся методы силового энергетического подавления, рассчитанные на выведение из строя определенных элементов приемных устройств, а также методы воздействия на окружающую среду, в которой распространяются радиосигналы подавляемых РЛС, искажение формы зондирующего и отраженного от объекта сигналов, ослабляющих мощность зондирующих и отраженных сигналов; методы уменьшения эффективной площади рассеяния (ЭПР) целей.
Таким образом, предлагаемая самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности может обеспечить эффективную боевую работу в условиях силового энергетического подавления, рассчитанного на выведение из строя СВЧ элементов радиолокационных приемных устройств без снижения основных тактико-технических характеристик СОУ.
название | год | авторы | номер документа |
---|---|---|---|
САМОХОДНАЯ ОГНЕВАЯ УСТАНОВКА ОБНАРУЖЕНИЯ, СОПРОВОЖДЕНИЯ И ПОДСВЕТА ЦЕЛЕЙ, НАВЕДЕНИЯ И ПУСКА РАКЕТ ЗЕНИТНОГО РАКЕТНОГО КОМПЛЕКСА СРЕДНЕЙ ДАЛЬНОСТИ | 2012 |
|
RU2521889C1 |
САМОХОДНАЯ ОГНЕВАЯ УСТАНОВКА ОБНАРУЖЕНИЯ, СОПРОВОЖДЕНИЯ И ПОДСВЕТА ЦЕЛЕЙ, НАВЕДЕНИЯ И ПУСКА РАКЕТ ЗЕНИТНОГО РАКЕТНОГО КОМПЛЕКСА СРЕДНЕЙ ДАЛЬНОСТИ | 2007 |
|
RU2333450C1 |
САМОХОДНАЯ ОГНЕВАЯ УСТАНОВКА ОБНАРУЖЕНИЯ, СОПРОВОЖДЕНИЯ И ПОДСВЕТА ЦЕЛЕЙ, НАВЕДЕНИЯ И ПУСКА РАКЕТ ЗЕНИТНОГО РАКЕТНОГО КОМПЛЕКСА СРЕДНЕЙ ДАЛЬНОСТИ | 2002 |
|
RU2208213C1 |
САМОХОДНАЯ ОГНЕВАЯ УСТАНОВКА ОБНАРУЖЕНИЯ, СОПРОВОЖДЕНИЯ И ПОДСВЕТА ЦЕЛЕЙ, НАВЕДЕНИЯ И ПУСКА РАКЕТ С ПОЛУАКТИВНЫМИ РАДИОЧАСТОТНЫМИ ГОЛОВКАМИ САМОНАВЕДЕНИЯ ЗЕНИТНОГО РАКЕТНОГО КОМПЛЕКСА СРЕДНЕЙ ДАЛЬНОСТИ | 2008 |
|
RU2363911C1 |
САМОХОДНАЯ ОГНЕВАЯ УСТАНОВКА ОБНАРУЖЕНИЯ, СОПРОВОЖДЕНИЯ И ПОДСВЕТА ЦЕЛЕЙ, НАВЕДЕНИЯ И ПУСКА РАКЕТ ЗЕНИТНОГО РАКЕТНОГО КОМПЛЕКСА СРЕДНЕЙ ДАЛЬНОСТИ | 2002 |
|
RU2223459C1 |
МНОГОФУНКЦИОНАЛЬНАЯ РАДИОЛОКАЦИОННАЯ СТАНЦИЯ ОБНАРУЖЕНИЯ ЦЕЛЕЙ, ПОДСВЕТА СОПРОВОЖДАЕМЫХ ЦЕЛЕЙ И НАВЕДЕНИЯ РАКЕТ ЗЕНИТНО-РАКЕТНОГО КОМПЛЕКСА СРЕДНЕЙ ДАЛЬНОСТИ ДЕЙСТВИЯ | 2007 |
|
RU2343394C1 |
МОБИЛЬНАЯ РАДИОЛОКАЦИОННАЯ УСТАНОВКА ПОДСВЕТА И НАВЕДЕНИЯ ЗЕНИТНО-РАКЕТНОГО КОМПЛЕКСА СРЕДНЕЙ ДАЛЬНОСТИ ДЕЙСТВИЯ | 2000 |
|
RU2169333C1 |
МОБИЛЬНАЯ РАДИОЛОКАЦИОННАЯ УСТАНОВКА ПОДСВЕТА И НАВЕДЕНИЯ ЗЕНИТНО-РАКЕТНОГО КОМПЛЕКСА СРЕДНЕЙ ДАЛЬНОСТИ | 2007 |
|
RU2330307C1 |
МОБИЛЬНЫЙ ЗЕНИТНЫЙ РАКЕТНЫЙ КОМПЛЕКС | 2003 |
|
RU2253820C2 |
ОГНЕВАЯ СЕКЦИЯ | 2003 |
|
RU2253821C1 |
Изобретение относится к военной технике, а именно к зенитным ракетным комплексам (ЗРК). Самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности содержит первую антенную систему, радиолокационную станцию, цифровую вычислительную систему, поворотную пусковую установку с ракетами, на которой установлена гироскопическая система измерения углов курса, крена и тангажа, систему навигации, топопривязки и ориентирования, размещенную на самоходном шасси, интеллектуальную систему (ИС), лазерный дальномер, оптико-электронную систему, соединённую через устройство сопряжения с ИС. Изобретение позволяет повысить боевую эффективность ЗРК в условиях силового энергетического подавления. 2 ил.
Самоходная огневая установка обнаружения, сопровождения и подсвета целей, наведения и пуска ракет зенитного ракетного комплекса средней дальности, содержащая первую антенную систему, радиолокационную станцию, цифровую вычислительную систему, поворотную пусковую установку с ракетами, гироскопическую систему измерения углов курса, крена и тангажа, систему навигации, топопривязки и ориентирования, вторую антенную систему, приемное устройство, интеллектуальную систему, причем выход первой антенной системы соединен с первым входом радиолокационной станции, первый выход которой подключен к первому входу цифровой вычислительной системы, первый выход которой подключен к поворотной пусковой установке с ракетами, на которой установлена гироскопическая система измерения углов курса, крена и тангажа, вход которой подключен к выходу системы навигации, топопривязки и ориентирования, размещенной на самоходном шасси, а выход гироскопической системы измерения углов курса, крена и тангажа соединен со вторым входом цифровой вычислительной системы, второй выход цифровой вычислительной системы подключен ко второму входу радиолокационной станции, второй выход которой соединен с входом первой антенной системы, выход второй антенной системы соединен с входом приемного устройства, выход приемного устройства подключен к первому входу интеллектуальной системы, выход интеллектуальной системы соединен с третьим входом цифровой вычислительной системы, третий выход которой подключен ко второму входу интеллектуальной системы, отличающаяся тем, что введены лазерный дальномер, выход которого подключен к третьему входу интеллектуальной системы, оптико-электронная система, которая через устройство сопряжения соединена с четвертым входом интеллектуальной системы.
САМОХОДНАЯ ОГНЕВАЯ УСТАНОВКА ОБНАРУЖЕНИЯ, СОПРОВОЖДЕНИЯ И ПОДСВЕТА ЦЕЛЕЙ, НАВЕДЕНИЯ И ПУСКА РАКЕТ ЗЕНИТНОГО РАКЕТНОГО КОМПЛЕКСА СРЕДНЕЙ ДАЛЬНОСТИ | 2007 |
|
RU2333450C1 |
Судно | 1946 |
|
SU70514A1 |
US 6343534 B1, 05.02.2002 | |||
СТЕКЛО ДЛЯ ВЫРАБОТКИ ВОЛОКНА | 2002 |
|
RU2225851C1 |
Авторы
Даты
2014-06-10—Публикация
2012-12-13—Подача