СПОСОБ ПОЛУЧЕНИЯ ОДНОРОДНОЙ МЕЛКОДИСПЕРСИОННОЙ ВЫСОКОАКТИВНОЙ МАССЫ СЫПУЧЕГО МАТЕРИАЛА ПРИ УТИЛИЗАЦИИ ФОСФОГИПСА Российский патент 2014 года по МПК C04B11/26 B02C13/14 

Описание патента на изобретение RU2522835C1

Настоящее изобретение относится к химической промышленности, а именно к переработке отходов предприятий химической и металлургической промышленности, в частности к технологии утилизации фосфогипса.

Продукт переработки фосфогипса может быть использован как сырье, материал или полуфабрикат в различных отраслях промышленности и сельского хозяйства, например в качестве добавки или основы в композиционных составах, используемых в строительной, дорожно-строительной отраслях.

До настоящего времени фосфогипс в массовом объеме не утилизируется и складируется на больших территориях в виде отвалов по всей территории Европейской части России. В настоящее время на территории Европейской части России отвалы фосфогипса составляют более 500 млн тонн. Ежегодно промышленность увеличивает их более чем на 10 млн тонн.

Известен способ переработки фосфогипса, включающий смешивание фосфогипса с добавкой, содержащей известь, и водой, гранулирование, после гранулирования проводят сушку холодным воздухом при температуре 15-20°C (см. RU 2309130 С1, опубл. 27.10.2007).

Известен способ утилизации фосфогипса, включающий нейтрализацию его путем введения гидрооксида кальция с последующим фильтрационным прессованием и отводом фильтрата. Фильтрационное прессование ведут с усилием, обеспечивающим механическую активацию фосфогипса, превышающим прочность исходных кристаллогидратов фосфогипса. (см. RU 2215707 С1, опубл. 10.11.2003).

Недостатком известных способов является недостаточное качество получаемых продуктов и высокие энергозатраты. Целью настоящего изобретения является получение качественных, экологически чистых строительных материалов при низких энергозатратах.

Поставленная цель решается с помощью способа получения однородной мелкодисперсной высокоактивной массы сыпучего материала (гипсового вяжущего) при утилизации фосфогипса, содержащей шаги, на которых:

- просушивают исходный фосфогипс, используя отходящие горячие газы обжиговых печей;

- нейтрализуют просушенный фосфогипс путем добавления нейтрализаторов;

- измельчают в молотковой дробилке;

- производят окончательную сушку нейтрализованного сырья посредством обжиговой печи;

- охлаждают окончательно просушенное сырье;

- подают охлажденное сырье на линии активации для последующего измельчения, механоактивации, химической и электрической активации, которое осуществляют активатором аэродинамическим вертикальным гравитационного типа, который содержит вертикальную камеру измельчения, выполненную в виде полого цилиндра, в крышках которого установлен вал с возможностью вращения, на валу закреплены по меньшей мере два рабочих диска, при этом дополнительно содержит стержни, установленные в стенке вертикальной камеры измельчения, била, радиально установленные на каждой поверхности рабочего диска и выступающие за края диска, при этом стержни установлены таким образом, что при вращении упомянутых дисков с билами стержни располагаются между билами, закрепленными на дисках.

При предварительном удалении влаги из фосфогипса используются отходящие горячие газы печей при температуре 300 градусов при использовании рекуператора или при температуре 600 градусов - без рекуператора.

Окончательную сушку нейтрализованного сырья посредством обжиговой печи производят при температуре от 140 до 180 градусов.

На Фиг.1 показана технологическая схема производства гипсового вяжущего из фосфогипса с применением аэродинамической активации, где 1 - склад фосфогипса; 2 - кран грейферный; 3 - дробилка валковая; 4 - транспортер ленточный; 5 - барабан сушильный; 6 - дробилка молотковая; 7 - грохот; 8 - транспортер возврата; 9, 10 и 18 - элеватор; 11 и 12 - транспортер; 13 - дозатор нейтрализатора; 1 4 - бункер; 15 - питатель тарельчатый; 16 - обжиговая печь; 17 - охладитель-дозреватель; 19 - конвейер винтовой; 20 - активатор аэродинамический; 21 - бункер готовой продукции.

На Фиг.2 показан активатор в разрезе согласно настоящему изобретению, где 22 - вертикальная камера; 23, 24 - верхняя и нижняя крышки камеры измельчения; 25 - вал; 26 - диски; 27 - стержни; 28 - била; 29 - отверстия в билах; 30 - загрузочный бункер; 31 - углубление в торцевой поверхности дисков; 32 - кольцо; 33 - подшипники, 38 - вертикально-лопастной выбрасыватель.

На Фиг.3 показан общий вид установки, где 34 - станина; 35 - приводной механизм; 36 - двигатель; 37 - выходное отверстие.

Важнейшей задачей подготовки к переработке является удаление излишней влаги (от 20 до 30% от общей массы). Влажность перед переработкой должны быть около 4%. Одновременно удаляется большая часть водорастворимых окислов фосфора и фтора, являющимися основными загрязняющими элементами в этой массе.

Данная задача решается использованием отходящих горячих газов обжиговых печей любого происхождения. В данном случае используются отходящие горячие газы печей для вспучивания перлита (300 градусов из рекуператора, 600 - без рекуператора) путем просушки материала в горизонтально вращающимся барабане (5). Далее следует дробление (3) в молотковой или иной дробилке до получения фракций до 8-10 мм. Более крупные фракции отсеиваются на грохоте (7) повторного дробления, транспортером возврата (8) возвращаются в дробилку (6).

Удаление основной части водорастворимых примесей осуществляется во время сушки одновременно с испарением воды, а также применением специально подбираемых (в зависимости от химического состава исходного сырья) порошковых нейтрализаторов на последующих ступенях переработки.

Используемые нейтрализаторы (негашеная известь, гидроксид алюминия) способствуют нейтрализации кислых соединений с образованием, например, труднорастворимых трикальцийфосфатов, фтористого кальция и гидроалюминатов.

На этой стадии измеряется pH (должна постоянно проверяться). При низких значениях (менее 6) pH доводится до 6-6,5 путем добавления нейтрализаторов (гашеная известь или известь, доломит и др.) в бункер смеситель (14).

Из бункера смесителя (14) смесь через тарельчатый питатель (15) поступает в обжиговую печь (16), в которой осуществляется окончательная сушка (дегидратация дигидрата сульфата кальция) и кальцинация гипса (перевод из стадии двуводного гипса (CaSO4·2H2O) в полуводный (CaSO4·0,5H2O)). Процесс происходит при температуре от 140 до 180 градусов в течение приблизительно 40 минут (температура и время обжига варьируются в зависимости от параметров сырья, влажность, кислотность, pH, размер фракции). После обжига сырье направляют в охладитель-дозреватель (17), где происходит охлаждение сырья и завершение процессов кальцинации и дегитратации.

Из охладителя подготовленную смесь направляют на линию активации, где в аэродинамических активаторах (20) происходит окончательный перевод двуводного сульфата кальция в полуводный, а также его измельчение и механоактивация до частиц нужных фракций (размеров) от 5 до 40 мкм и достижения требуемых свойств.

В результате получается материал, соответствующий гипсовому вяжущему по ГОСТ 125-79 от Г4 до Г9, в зависимости от степени активации. При этом химический состав полученного материала соответствует единым санитарно-эпидемиологическим и гигиеническим требованиям, что подтверждено соответствующими сертификатами.

Активатор (20) содержит вертикальную камеру (22) измельчения, выполненную в виде полого цилиндра и закрытую крышками (23,24). В крышках (23, 24) установлен вал (25) с возможностью вращения посредством подшипников (33). На валу (25) закреплены по меньшей мере два рабочих диска (26), каждый из которых содержит била (28), радиально установленные на каждой поверхности по крайней мере одного рабочего диска (26) и выступающие за края данного диска (26). При этом била (28) расположены один под другим и каждый из которых содержит по меньшей мере одно отверстие (29), которое может быть выполнено на одной оси. Торцевая поверхность каждого диска (26) может быть выполнена с кольцевым углублением (31).

Активатор также содержит стержни (27), установленные в стенке вертикальной камеры измельчения (22), при этом стержни (27) установлены таким образом, что при вращении упомянутых дисков (26) с билами (28) упомянутые стержни (27) располагаются между билами (28), закрепленными на дисках (26). Стержни (27) выполняют регулируемыми по глубине ввода в вертикальную камеру (22) измельчения для регулирования размера получаемых частиц.

Активатор установлен на станине (34) совместно с двигателем (36), от которого посредством приводного механизма (35) передается крутящий момент на вал (25).

Выходное отверстие (37) выполнено в нижней крышке (24) вертикальной камеры (22) измельчения, а загрузочный бункер (30) - в верхней крышке (23) вертикальной камеры (22) измельчения.

Активатор (20) содержит по меньшей мере одно кольцо (32), которое располагают под каждым диском (26). Каждое кольцо (32) выполняют в виде колеса с лопастями, где часть колеса, расположенного под выступающими частями бил (28), выполнено сплошным.

Активатор (20) работает следующим образом. Сыпучий материал (подготовленный фосфогипс) с тониной помола не более 5 мм засыпается в вертикальную камеру (22) измельчения. После включения привода (двигателя (36)), который соединен с валом (25) через приводной механизм (35) (ремни), вал (26) начинает вращаться в подшипниках (33), установленных в крышках (23, 24) вертикальной камеры (22) измельчения, и, соответственно, крутящий момент от двигателя (36) передается на диски (26) с билами (27), в результате чего частицы сыпучего материала (в данном случае подготовленного фосфогипса) при взаимодействии с билами (28) рассыпаются, и движутся к выходному отверстию (37), выполненному в нижней крышке (24) вертикальной камеры (22) измельчения. При этом частицы сыпучего материала соударяются как между собой, так и о стержни (27) камеры измельчения и еще сильнее перетираются и измельчаются.

Частицы при ударе о нижнюю поверхность рабочих органов активатора отражаются вниз и постепенно переходят на нижние уровни активатора и под воздействием гравитации оседают на нижней крышке (24) вертикальной камеры (22) измельчения, где вертикально-лопастным выбрасывателем (38) выбрасываются через выходное отверстие (37), выполненное в нижней части вертикальной камеры (22.) измельчения.

Активация достигается путем измельчения сыпучих материалов до размеров частиц от 40 до 5 мкм, вплоть до разрушения кристаллической решетки кристаллов гипса.

Измельчение осуществляется методом разгона частиц до высоких скоростей (линейная скорость частиц у внутренней стенки статора - от 100 до 150 м/с), и соударения их о стержни статора или вращающиеся била ротора, а также столкновения частиц между собой после отражения от стержней и бил. Причем основным элементом измельчения является именно столкновение частиц между собой, при этом в небольшой массе измельчаемого материала количество таких столкновений может доходить до нескольких тысяч.

При столкновении частиц происходит

а) Поверхностная активация. Разрушение частиц путем выбивания мелких частиц друг из друга при соударении их, что приводит в конечном итоге к получению частиц, в форме «ежиков». В отличие от частиц, получаемых в стандартных дробилках (молотковых, шаровых), которые имеют зализанную плоскую или рисообразную эллиптическую форму. Удельная площадь частиц увеличивается при этом в 2,5-3 раза.

б) Химическая активация. Происходит разрушение кристаллической решетки измельчаемого материала и разрыв межмолекулярных связей, при этом образуются свободные ковалентные связи, в связи с чем резко возрастает химическая активность материала.

в) Электрическая активация. При многочисленных столкновениях и трении частиц о поверхность рабочих органов активатора возникает наведенная электризация.

Измельчение и активация сыпучих материалов осуществляются при высоких скоростях движения частиц от 100 до 150 м/с, при этом активатор имеет возможности для регулирования скорости разгона частиц в указанных пределах и, следовательно, изменения степени активации обрабатываемого материала, включая измельчение частиц до размеров менее 5 мкм.

При разломе кристаллов двуводного гипса (CaSO4·2H2O) обнажаются корпускулированные в них мелкие кристаллы фтористых, фосфорных и иных химических соединений, нейтрализация которых ранее была не возможна из-за отсутствия контакта с нейтрализирующими веществами. При этом указанные соединения взаимодействуют с нейтрализаторами и переходят в нерастворимые нейтральные формы.

Полученный таким образом материал обладает высокой прочностью, негигроскопичен, морозоустойчив (свыше 35 циклов), огнеустойчив, имеет высокую теплостойкость и отвечает экологическим требованиям.

Похожие патенты RU2522835C1

название год авторы номер документа
АКТИВАТОР АЭРОДИНАМИЧЕСКИЙ ВЕРТИКАЛЬНЫЙ ГРАВИТАЦИОННОГО ТИПА 2013
  • Котенков Александр Алексеевич
RU2512554C1
АКТИВАТОР АЭРОДИНАМИЧЕСКИЙ ВЕРТИКАЛЬНЫЙ С ВОСХОДЯЩИМ ВИХРЕВЫМ ПОТОКОМ 2013
  • Котенков Александр Алексеевич
RU2534589C1
УСТРОЙСТВО ДЛЯ АКТИВАЦИИ СЫПУЧИХ МАТЕРИАЛОВ 2006
  • Филиппов Дмитрий Александрович
  • Задорожный Олег Анатольевич
  • Котенков Александр Алексеевич
  • Голяткин Александр Юрьевич
RU2328345C2
КОМПОЗИЦИОННЫЙ ВЯЖУЩИЙ МАТЕРИАЛ ИЗ ФОСФОГИПСА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2023
  • Куренков Сергей Владимирович
  • Чирковский Всеволод Евгеньевич
  • Леонтьев Владимир Юрьевич
  • Коротковский Сергей Алексеевич
RU2816610C1
Способ переработки свежего фосфогипса 2018
  • Кочетков Андрей Викторович
  • Кочетков Дмитрий Андреевич
  • Коротковский Сергей Алексеевич
  • Талалай Виктор Вячеславович
  • Талалай Мария Викторовна
  • Васильев Юрий Эммануилович
RU2723804C2
ГИПСОПЕРЛИТ 2013
  • Котенков Александр Алексеевич
RU2519146C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНОГО И БЫСТРОТВЕРДЕЮЩЕГО АЛИТОВОГО ПОРТЛАНДЦЕМЕНТА И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2012
  • Комаров Александр Степанович
  • Комаров Олег Александрович
  • Агафонов Анатолий Иванович
  • Агафонов Роман Андреевич
  • Пивкин Александр Григорьевич
  • Пивкина Анна Александровна
  • Любимов Владимир Сергеевич
RU2520739C2
ЦЕНТРОБЕЖНАЯ МНОГОСТУПЕНЧАТАЯ ДРОБИЛКА 1993
  • Черных О.Л.
RU2053021C1
УНИВЕРСАЛЬНАЯ МЕЛЬНИЦА 1996
  • Липанов А.М.
  • Денисов В.А.
RU2116131C1
УСТРОЙСТВО ДЛЯ ИЗМЕЛЬЧЕНИЯ МАТЕРИАЛОВ 1993
  • Детиненко Владимир Алексеевич
RU2053022C1

Иллюстрации к изобретению RU 2 522 835 C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ ОДНОРОДНОЙ МЕЛКОДИСПЕРСИОННОЙ ВЫСОКОАКТИВНОЙ МАССЫ СЫПУЧЕГО МАТЕРИАЛА ПРИ УТИЛИЗАЦИИ ФОСФОГИПСА

Изобретение относится к переработке отходов предприятий химической и металлургической промышленности, в частности к технологии утилизации фосфогипса. Технический результат заключается в получении качественных, экологически чистых строительных материалов при низких энергозатратах. Способ получения однородной мелкодисперсной высокоактивной массы сыпучего материала (гипсового вяжущего) при утилизации фосфогипса содержит шаги, на которых просушивают исходный фосфогипс, используя отходящие горячие газы обжиговых печей; нейтрализуют просушенный фосфогипс путем добавления нейтрализаторов; производят окончательную сушку нейтрализованного сырья посредством обжиговой печи; охлаждают окончательно просушенное сырье; подают охлажденное сырье на линии активации для последующего измельчения, механоактивации, химической и электрической активации, которую осуществляют активатором аэродинамическим вертикальным гравитационного типа, который содержит вертикальную камеру измельчения, выполненную в виде полого цилиндра, в крышках которого установлен вал с возможностью вращения, на валу закреплены по меньшей мере два рабочих диска, при этом дополнительно содержит стержни, установленные в стенке вертикальной камеры измельчения, била, радиально установленные на каждой поверхности рабочего диска и выступающие за края диска, при этом стержни установлены таким образом, что при вращении упомянутых дисков с билами стержни располагаются между билами, закрепленными на дисках. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 522 835 C1

1. Способ получения однородной мелкодисперсной высокоактивной массы сыпучего материала при утилизации фосфогипса, содержащий шаги, на которых:
- просушивают исходный фосфогипс, используя отходящие горячие газы обжиговых печей;
- нейтрализуют просушенный фосфогипс путем добавления нейтрализаторов;
- измельчают в молотковой дробилке;
- производят окончательную сушку нейтрализованного сырья посредством обжиговой печи;
- охлаждают окончательно просушенное сырье;
- подают охлажденное сырье на линии активации для последующего измельчения, механоактивации, химической и электрической активации, которое осуществляют активатором аэродинамическим вертикальным гравитационного типа, который содержит вертикальную камеру измельчения, выполненную в виде полого цилиндра, в крышках которого установлен вал с возможностью вращения, на валу закреплены по меньшей мере два рабочих диска, при этом дополнительно содержит стержни, установленные в стенке вертикальной камеры измельчения, била, радиально установленные на каждой поверхности рабочего диска и выступающие за края диска, при этом стержни установлены таким образом, что при вращении упомянутых дисков с билами стержни располагаются между билами, закрепленными на дисках.

2. Способ по п.1, отличающийся тем, что при предварительном удалении влаги из фосфогипса используются отходящие горячие газы печей при температуре 300 градусов при использовании рекуператора или при температуре 600 градусов - без рекуператора.

3. Способ по п.1, отличающийся тем, что окончательную сушку нейтрализованного сырья посредством обжиговой печи производят при температуре от 140 до 180 градусов.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522835C1

СПОСОБ УТИЛИЗАЦИИ ФОСФОГИПСА 2002
  • Гордеев И.В.
  • Ковешников А.В.
  • Михеенков М.А.
  • Овцын В.Е.
  • Чуваев С.И.
  • Шубин В.И.
RU2215707C1
СПОСОБ ПЕРЕРАБОТКИ ФОСФОГИПСА 2006
  • Щеголев Виктор Александрович
  • Попов Геннадий Николаевич
  • Щеголев Александр Николаевич
RU2309130C1
Способ изготовления строительных изделий 1987
  • Полак Алексей Филиппович
  • Бабков Вадим Васильевич
  • Ляшкевич Игорь Михайлович
  • Раптунович Галина Соломоновна
  • Анваров Рамиль Айдарович
SU1470699A1
Манометр 1938
  • Перчихин Н.И.
SU63250A1
КОМПЛЕКСНАЯ ДОБАВКА ДЛЯ БЕТОННОЙ СМЕСИ, СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОЙ ДОБАВКИ ДЛЯ БЕТОННОЙ СМЕСИ И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ПОЛУЧЕНИЯ КОМПЛЕКСНОЙ ДОБАВКИ ДЛЯ БЕТОННОЙ СМЕСИ 2005
  • Котенков Александр Алексеевич
  • Медведев Владимир Михайлович
  • Кузнецов Валерий Анатольевич
RU2298535C1
CN 102351448 A, 15.02.2012
Защитные очки 1929
  • Рацер С.Д.
SU29230A1
SU 1805626 A1, 20.07.1996
СПОСОБ ПОЛУЧЕНИЯ ГИПСОВОГО ВЯЖУЩЕГО 2002
  • Мясников Н.Ф.
  • Бершаков Н.Г.
  • Козлов В.П.
  • Наумов Е.Г.
  • Шевченко Н.Н.
RU2210540C1
АНВАРОВ Р.А
Технология изготовления строительных изделий из механоактивированного фосфогипса, автореферат

RU 2 522 835 C1

Авторы

Котенков Александр Алексеевич

Даты

2014-07-20Публикация

2013-03-05Подача