СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНОГО ЭЛЕКТРЕТА Российский патент 2014 года по МПК H01G7/02 

Описание патента на изобретение RU2523337C1

Изобретение относится к области технологий изготовления пленочных электретов. В последние годы отмечается динамичный рост использования полимерных пленочных электретов в современных наукоемких устройствах и технологиях. Область применения полимерных пленочных электретов постоянно расширяется - от хорошо известных технических приложений (таких как электретные микрофоны, пьезо- и пироэлектрические преобразователи и сенсоры) до инновационных разработок в области микросистемной техники, нелинейной оптики и молекулярной биологии.

Важнейшими факторами, обусловливающими эффективность практического использования полимерных пленочных электретов, являются величина и стабильность сформированного в них электретного заряда. В первую очередь имеется в виду временная стабильность, в качестве критерия которой иногда используют параметр τ (время жизни электрета) - время, за которое эффективная поверхностная плотность заряда электрета σ уменьшается в е раз. Для полимеров с ярко выраженными электретными свойствами типичные значения параметра τ при нормальных условиях составляют значения от нескольких суток до нескольких лет. Однако время жизни электретов резко уменьшается по мере увеличения эффективной поверхностной плотности накопленного в них заряда. Поэтому критерием качества электрета также является величина стабильной остаточной поверхностной плотности заряда σст. Типичные значения стабильной остаточной плотности заряда σст, которые реально удается получить на практике, составляют, как правило, величины порядка 10-6-10-5 Кл/м2, редко достигают значений 10-4-10-3 Кл/м2.

Наряду со стабильностью поверхностной плотности заряда во времени, важнейшей комплексной характеристикой электретов является термостабильность заряда, которая, во-первых, определяет номинальные температурные условия эксплуатации электретных материалов, а во-вторых, указывает максимальные температуры, до которых допускается кратковременный нагрев таких материалов без существенного спада электретного заряда.

Формирование в полимерных пленочных материалах стабильного электретного заряда обычно предполагает их обработку в электрическом поле (электретирование). Наиболее эффективным и технологичным способом электретирования в настоящее время является способ зарядки полимерных пленок в коронном разряде. В ряде случаев в полимерную матрицу или на поверхность пленки вводят (наносят) вещества, способные увеличить поляризационные эффекты в полимере.

Известен способ изготовления электретов путем конденсации паров на диэлектрическом изделии с последующей сушкой [1]. Предложен способ электризации нетканого диэлектрического полотна ударами струй воды под давлением с последующей сушкой [2]. Недостатки указанных способов:

- они являются разновидностями методов контактной электризации диэлектрических пленок [3], для которых характерна низкая величина и стабильность поверхностной плотности заряда получаемых электретов. Кроме того, данные методы не обеспечивают однородность и воспроизводимость распределения поверхностной плотности заряда по поверхности изготавливаемых электретов и в целом являются не технологичными.

- в них отсутствуют непосредственные сведения о величине и стабильности электретного заряда, а об электретных свойствах получаемых объектов судят косвенно (по увеличению эффективности фильтрации фильтрующих систем на их основе), что не позволяет прогнозировать величину и стабильность электретного заряда.

- данные способы не позволяют изготавливать электреты из фторполимеров с положительным зарядом, поскольку фторполимеры являются наиболее электроотрицательными диэлектриками и при контактной электризации заряжаются только отрицательным зарядом [3].

Для изготовления пленочных электретов с положительным зарядом из фторполимеров обычно используют зарядку в коронном разряде. Однако получаемые таким способом электреты характеризуются низкой стабильностью положительного заряда [4]. С целью повышения стабильности положительного заряда во фторполимерах предложен ряд способов [5, 6].

Так, в патенте [5] для стабилизации положительного заряда производят зарядку в положительном коронном разряде при повышенных температурах. Указанный способ позволяет заметно увеличить термостабильность положительного заряда, однако обладает при этом следующими недостатками:

- низкая поверхностная плотность электретного заряда (всего 0,2 мКл/м2);

- невозможность надежного контроля исходной величины электретного заряда;

- отсутствуют экспериментальные данные о долговременной стабильности заряда (указаны только расчетные значения времени жизни электрета τ).

Прототипом изобретения является способ изготовления пленочного электрета [6], включающий нанесение на металлический электрод слоя фторполимера, нанесение на поверхность фторполимера дискретного слоя, состоящего из изолированных друг от друга наноразмерных агрегатов титансодержащих наноструктур, и последующее электретирование в положительном коронном разряде. Сущность данного технического решения состоит в том, что наноразмерные агрегаты титансодержащих наноструктур на поверхности фторполимерной пленки являются энергетически глубокими ловушками для положительного заряда. Кроме того, титансодержащие наноструктуры значительно снижают подвижность поверхностных макромолекул, что в совокупности приводит к увеличению стабильности поверхностной плотности положительного заряда, сообщаемого фторполимеру при электретировании. В результате достигается возможность получения электретов со стабильной поверхностной плотностью заряда σст до 1,44 мКл/м2. Это создает условия для использования таких электретов в устройствах, где кроме отрицательных зарядов приемлемой стабильностью должны обладать и положительные заряды.

Недостатки прототипа:

- недостаточная величина стабильной поверхностной плотности заряда электрета;

- недостаточная термостабильность и стабильность во времени электретного заряда.

Цель изобретения - повышение величины и стабильности поверхностной плотности положительного заряда в пленочных фторполимерах.

Выбор фторполимеров в качестве объекта для реализации заявляемого способа обусловлен следующими соображениями. На сегодняшний день фторполимеры обладают самыми высокими электретными характеристиками. Именно фторполимеры реально используются при массовом производстве электретов. И наконец, именно на их базе имеются реальные перспективы создания новейших технических устройств. Например, биполярных электретных микрофонов и нового класса пьезодатчиков с гигантским пьезомодулем (до 1000 пКл/Н) - «ферроэлектреты». Сдерживающим фактором для создания таких устройств является недостаточная величина и стабильность положительного заряда во фторполимерах (напомним, что отрицательные заряды во фторполимерах очень стабильны). Поэтому разработка способов изготовления пленочных электретов из фторполимеров, несущих стабильный положительный заряд, является актуальной задачей.

Искомый технический результат достигается за счет того, что в известном способе изготовления пленочного электрета перед нанесением на поверхность фторполимера дискретного слоя, состоящего из изолированных друг от друга наноразмерных агрегатов титансодержащих наноструктур, поверхность фторполимера трибоэлектризуют диэлектрическим контртелом, сообщая отрицательный заряд.

Сущность изобретения состоит в том, что трибоэлектризация поверхности фторполимера диэлектрическим контртелом приводит к:

1) механическому разрушению и частичному удалению физически сорбированных загрязнений на поверхности полимерной пленки;

2) формированию однородного распределения микрошероховатостей по поверхности полимерной пленки;

3) накоплению отрицательных трибозарядов на поверхности полимерной пленки.

Все эти три фактора увеличивают реакционную способность поверхности фторполимера. В результате при последующем нанесении на поверхность трибоэлектризованного фторполимера дискретного слоя изолированных друг от друга наноразмерных агрегатов титансодержащих наноструктур методом молекулярного наслаивания [7] к поверхностным макромолекулам прививается большее количество наноструктур. Так, по данным рентгеновской фотоэлектронной спектроскопии общее содержание титана в дискретном слое, нанесенном по способу-прототипу, составляет 2 атомных процента, то в слое, нанесенном по заявляемому способу, 2,5-3 атомных процента. Таким образом, удается увеличить поверхностную концентрацию энергетически глубоких ловушек, а следовательно величину и стабильность положительного заряда сообщаемого фторполимеру при последующем электретировании в коронном разряде.

Последовательность операций при реализации заявляемого способа состоит в следующем. На металлический электрод наносится пленка фторполимера. Трибоэлектризация свободной поверхности фторполимера производится в процессе трения скольжения, при котором диэлектрическое контртело совершает возвратно-поступательные движения со средней скоростью 8 см/с в течение 10 секунд. (При нормальной нагрузке во фрикционной паре не более 500 грамм максимальный отрицательный трибозаряд, приобретаемый фторполимером, не превышает величины ((8,2-8,8)·10-4 Кл/м2). После чего трибоэлектризованная поверхность фторполимера обрабатывается парами тетрахлорида титана (TiCl4) в реакторе проточного типа при температуре 130°C в течение 10 мин. Затем реактор продувается потоком осушенного газа-носителя (воздух) без подачи реагента (TiCl4) и охлаждается в течение 5 мин. После извлечения образцов из реактора они электретируются положительным зарядом.

Перечень фигур

Фиг.1 Результаты климатических испытаний (при 40°C и 98% относительной влажности) пленочных электретов на стабильность поверхностной плотности заряда:

2 - электреты, изготовленные по способу-прототипу;

1 - электреты, изготовленные согласно заявляемому способу.

Фиг.2 Результаты испытаний (при линейном нагреве образцов со скоростью 5°C/мин) пленочных электретов на термостабильность поверхностной плотности заряда:

2 - электреты, изготовленные по способу-прототипу;

1 - электреты, изготовленные согласно заявляемому способу.

Приведем примеры реализации способа.

Пример 1. Изготавливается партия (15 шт.) полимерных пленочных электретов согласно изобретению. На металлический электрод наносится пленка политетрафторэтилена толщиной 13 мкм, после чего ее свободную поверхность трибоэлектризуют диэлектрическим контртелом, сообщая отрицательный заряд ((4-5)·10-4 Кл/м2). Для этого диэлектрическое контртело (полиэтиленовый волокнит), в процессе трения скольжения, совершало возвратно-поступательные движения со средней скоростью 8 см/с в течение 10 секунд при нормальной нагрузке во фрикционной паре 500 грамм. После чего трибоэлектризованная поверхность политетрафторэтилена обрабатывается парами тетрахлорида титана (TiCl4) в реакторе проточного типа при температуре 130°C в течение 10 мин. Затем реактор продувается потоком осушенного газа-носителя (воздух) без подачи реагента (TiCl4) и охлаждается в течение 5 мин. После извлечения образцов из реактора они электретируются положительным зарядом. Электретирование производится в положительном коронном разряде на воздухе до величины начальной поверхностной плотности заряда 20,4·10-4 Кл/м.

Результаты климатических испытаний (40°C, 98% относительной влажности) таких электретов на стабильность показаны на фиг.1 - кривая 1.

Пример 2. Изготавливается партия (15 шт.) полимерных пленочных электретов согласно способу-прототипу. На металлический электрод наносится пленка политетрафторэтилена толщиной 13 мкм, после чего на ее свободную поверхность наносится дискретный слой, состоящий из изолированных друг от друга наноразмерных агрегатов титансодержащих наноструктур. Для этого свободная поверхность пленки обрабатывается парами тетрахлорида титана (TiCl4) в реакторе проточного типа при температуре 130°C в течение 10 мин. Затем реактор продувается потоком осушенного газа-носителя (воздух) без подачи реагента (TiCl4) и охлаждается в течение 5 мин. После извлечения образцов из реактора они электретируются положительным зарядом. Электретирование производится в положительном коронном разряде на воздухе до величины начальной поверхностной плотности заряда 20,4·10-4 Кл/м2.

Результаты климатических испытаний (40°C, 98% относительной влажности) таких электретов на стабильность показаны на фиг.1 - кривая 2.

Пример 3. Изготавливается партия (15 шт.) полимерных пленочных электретов согласно изобретению (так же как в примере 1).

Результаты испытаний полученных пленочных электретов на термостабильность (в режиме линейного нагрева образцов со скоростью 5°C/мин) представлены на фиг.2 - кривая 1.

Пример 4. Изготавливается партия (15 шт.) полимерных пленочных электретов согласно способу-прототипу (так же как в примере 2).

Результаты испытаний полученных пленочных электретов на термостабильность (в режиме линейного нагрева образцов со скоростью 5°C/мин) представлены на фиг.2 - кривая 2.

Анализ результатов, представленных на фиг.1 и фиг.2, свидетельствует о следующем.

1. Временная стабильность поверхностной плотности положительного заряда в электретах, изготовленных из фторполимерной пленки согласно изобретению (фиг.1, кривая 1), существенно выше, чем у электретов, полученных известным способом (фиг.1,кривая 2).

2. Величина остаточной (стабильной) поверхностной плотности положительного заряда у электретов, изготовленных из фторполимерной пленки согласно изобретению (фиг.1, кривая 1), в 1,25 раза выше, чем у электретов, полученных известным способом (фиг.1, кривая 2).

3. Термостабильность поверхностной плотности положительного заряда у электретов, изготовленных из фторполимерной пленки согласно изобретению (фиг.2, кривая 1), выше, чем у электретов, полученных известным способом (фиг.2, кривая 2). Об этом, в частности, можно судить по характерным точкам (отмечены на фиг.2 стрелками) на зависимостях относительной поверхностной плотности заряда электретов от температуры.

Таким образом, цель изобретения, заключающаяся в повышении величины и стабильности поверхностной плотности положительного заряда в электретах на основе фторполимерных пленок, достигнута.

Источники информации

1. Патент 2260866.

2. Патент 2130521.

3. Полимерные электреты // .Г.А. Лущейкин. - М.: Химия. - 1984. - 184 с.

4. Electrets // G.M. Sessler (Ed.). - 3rd ed., vol.1. - Laplacian press, Morgan Hill, Ca, 1999, pp.41-42.

5. US Patent 4527218.

6. Положительное решение (от 17.10.12) о выдаче патента по заявке №2011114060 на изобретение (прототип).

7. Технология молекулярного наслаивания и некоторые области ее применения // А.А. Малыгин. - Журнал прикладной химии. - 1996. - Т. 69, №10. - с.1585-1593.

Похожие патенты RU2523337C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНОГО ЭЛЕКТРЕТА 2013
  • Рычков Андрей Александрович
  • Кузнецов Алексей Евгеньевич
  • Рычков Дмитрий Андреевич
  • Малыгин Анатолий Алексеевич
  • Юленец Юрий Павлович
  • Ефимов Никита Юрьевич
RU2528618C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНОГО ЭЛЕКТРЕТА 2011
  • Рычков Андрей Александрович
  • Рычков Дмитрий Андреевич
  • Дергачев Владимир Федорович
  • Кузнецов Алексей Евгеньевич
RU2477540C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРЕТНОГО МАТЕРИАЛА НА ОСНОВЕ ФТОРПОЛИМЕРА 2020
  • Новожилова Елена Анатольевна
  • Малыгин Анатолий Алексеевич
  • Рычков Андрей Александрович
  • Кузнецов Алексей Евгеньевич
RU2748032C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРЕТНОГО МАТЕРИАЛА 2023
  • Новожилова Елена Анатольевна
  • Корсакова Ксения Андреевна
  • Малыгин Анатолий Алексеевич
  • Кузнецов Алексей Евгеньевич
RU2812339C1
ЭЛЕКТРЕТНЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИЭТИЛЕНА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2017
  • Кочеткова Анна Сергеевна
  • Соснов Евгений Алексеевич
  • Ефимов Никита Юрьевич
  • Малыгин Анатолий Алексеевич
  • Рычков Андрей Александрович
  • Кузнецов Алексей Евгеньевич
RU2648360C1
ПЛЕНОЧНЫЙ ЭЛЕКТРЕТ 2023
  • Бузанов Григорий Алексеевич
  • Козлов Владислав Игоревич
  • Койфман Оскар Иосифович
  • Лукина Полина Сергеевна
  • Агеева Татьяна Арсеньевна
  • Савинкина Елена Владимировна
  • Сигов Александр Сергеевич
  • Титов Михаил Игоревич
  • Фомичев Валерий Вячеславович
  • Буш Александр Андреевич
  • Караваев Игорь Александрович
RU2825438C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНОГО ЭЛЕКТРЕТА 2022
  • Сигов Александр Сергеевич
  • Буш Александр Андреевич
  • Румянцева Валентина Дмитриевна
  • Агеева Татьяна Арсеньевна
  • Горшкова Анастасия Сергеевна
  • Козлов Владислав Игоревич
  • Койфман Оскар Иосифович
  • Матис Мария Евгеньевна
  • Фомичев Валерий Вячеславович
RU2793453C1
КОМПОЗИТНЫЙ ПОЛИМЕРНЫЙ УПАКОВОЧНЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИЭТИЛЕНА ВЫСОКОГО ДАВЛЕНИЯ С ДОБАВКАМИ КРАХМАЛА И ДИОКСИДА КРЕМНИЯ 2014
  • Бурда Валентин Васильевич
  • Гороховатский Юрий Андреевич
RU2568488C1
Способ изготовления полимерных пленочных электретов 1978
  • Бойцов В.Г.
  • Тазенков Б.А.
  • Дружинин В.П.
  • Горбунова Е.К.
  • Перепелица Л.А.
  • Розин А.Г.
SU758939A1
Способ получения электретов с заданной поверхностной плотностью зарядов 1981
  • Бойцов В.Г.
  • Рогинский Р.Э.
  • Скугарев А.С.
  • Суханов К.Л.
  • Тазенков Б.А.
SU959569A2

Иллюстрации к изобретению RU 2 523 337 C1

Реферат патента 2014 года СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНОГО ЭЛЕКТРЕТА

Изобретение относится к области электротехники, а именно к способу изготовления полимерных пленочных электретов, которые могут быть использованы при производстве биполярных электретных микрофонов и пьезодатчиков на основе ламинированных электретных пленок, обладающих стабильным зарядом. Заявленный способ включает нанесение на металлический электрод слоя фторполимера, нанесение на поверхность фторполимера дискретного слоя, состоящего из изолированных друг от друга наноразмерных агрегатов из титансодержащих наноструктур, и последующее электретирование в положительном коронном разряде, при этом перед нанесением титансодержащих наноструктур поверхность фторполимера трибоэлектризуют диэлектрическим контртелом, сообщая поверхности отрицательный заряд. Повышение величины и стабильности поверхностной плотности положительного заряда пленочного фторполимерного электрета является техническим результатом заявленного изобретения. 2 ил., 2 пр.

Формула изобретения RU 2 523 337 C1

Способ изготовления пленочного электрета, включающий нанесение на металлический электрод слоя фторполимера, нанесение на поверхность фторполимера дискретного слоя, состоящего из изолированных друг от друга наноразмерных агрегатов титансодержащих наноструктур, и последующее электретирование в положительном коронном разряде, отличающийся тем, что перед нанесением титансодержащих наноструктур поверхность фторполимера трибоэлектризуют диэлектрическим контртелом, сообщая отрицательный заряд.

Документы, цитированные в отчете о поиске Патент 2014 года RU2523337C1

RU 2011114060 A 20.10.2012
JP 2005191467 A, 14.07.2005
WO 2004021379 A2, 11.03.2004
US 4527218 A, 02.07.1985
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРЕТОВ ПУТЕМ КОНДЕНСАЦИИ ПАРОВ 2000
  • Инслей Томас И.
  • Кнолл Рэндалл Л.
RU2260866C2

RU 2 523 337 C1

Авторы

Рычков Андрей Александрович

Рычков Дмитрий Андреевич

Кузнецов Алексей Евгеньевич

Иванов Вадим Александрович

Малыгин Анатолий Алексеевич

Ефимов Никита Юрьевич

Даты

2014-07-20Публикация

2012-12-25Подача