СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА Российский патент 2014 года по МПК C01B3/10 

Описание патента на изобретение RU2524391C1

Изобретение относится к области химии, а более точно касается способа получения водорода.

Ввиду предполагаемого перехода к водородной энергетике производство молекулярного водорода является важнейшей задачей.

Наиболее дешевым и доступным сырьем для получения водорода в настоящее время рассматривается вода.

Известны различные способы получения водорода при взаимодействии воды с металлами, например, термохимический железо-паровой способ получения водорода.

Известен способ получения водорода (RU №2191742, опубл. 27.10.2002), при котором водород получают из водяного пара путем его конверсии в среде раскаленного в высоковольтном разряде технического железа, затем подвергают двустадийному осушению и сбору в интерметаллидные компрематоры, доводящие водород при десорбции до высокой степени чистоты, составляющей 99,99 об.%.

Известен способ получения водорода (RU №2466927, опубл. 20.11.2012) путем циклического окисления порошка металлического вольфрама водяным паром, который затем восстанавливают до металла при температуре 950-1200°С с помощью синтез-газа, получаемого при паровой конверсии угля. В начале циклического процесса чистый водяной пар подается в реактор с порошком металлического вольфрама при температуре 900-1200°С и давлении 0,1 МПа, где протекает реакция окисления. Для обеспечения требуемой глубины окисления металлического вольфрама водяной пар подается в реактор с 5-10-кратным избытком. Окисление металлического вольфрама до оксида W18O49 протекает в течение 15-20 минут. В результате реакции образуется газовая смесь водяного пара с водородом.

Производительность этих способов обусловлена периодической работой и скоростью гидротермального окисления.

Наиболее близким к предлагаемому изобретению является получение водорода путем взаимодействия алюминия и воды.

Известен способ получения водорода из воды с помощью плазменного генератора (RU №2440925, опубл. 27.01.2012), при котором в качестве рабочего плазмообразующего вещества используют пар или пароводяную смесь, в область дуги подают алюминиевый пруток и полученную смесь водорода и мелкодисперсных частиц оксида алюминия охлаждают в воде для отделения чистого водорода.

Известен способ получения водорода (RU №2432316, опубл. 27.10.2011), при котором в реактор в зону расположения алюминиевых электродов подают воду со следами гидроокисей щелочных металлов. Между электродами создают вольтову дугу, которая диспергирует алюминиевые электроды и распыляет их в вольтовой дуге с образованием алюминиевого нанопорошка, который взаимодействует с водой, образует оксиды алюминия и газообразный водород.

Известен способ получения водорода (RU №2430011, опубл. 27.10.2011, №2428372, опубл. 10.09.2011), при котором в реактор между электродами периодически подают воду и алюминиевый порошок. Ток проходит по слою металлического порошка, образуя в точках неполного касания искровой высокочастотный разряд, диспергируют порошок, образуя наночастицы алюминия, которые, взаимодействуя с водой, образуют окислы алюминия и газообразный водород.

Известен способ получения водорода (RU №2363659, опубл. 10.08.2009) окислением алюминия водой, при котором готовят суспензию порошкообразного алюминия в воде в присутствии катализатора гидроксида щелочного металла и распыляют ее в реактор высокого давления, выдерживают для окисления алюминия и выводят из реактора смесь паров воды и водорода.

Известен способ получения водорода (RU №2223221, опубл. 10.02.2004) окислением алюминия водой, при котором суспензию мелкодисперсного порошкообразного алюминия в воде, непрерывно подают в реактор высокого давления, где суспензию порошкообразного алюминия распыляют при диаметре капель не более 100 мкм в воду при температуре 220-900°С и давлении 20-40 МПа.

Главным недостатком известных методов окисления алюминия является невысокая производительность, обусловленная гетерогенным характером процесса на поверхности металлических частиц. Отрицательно влияет на производительность гидротермальных установок и циклический характер их работы, требующий периодической перезагрузки топлива и очистки фильтров от образующихся крупных частиц Аl2О3. Это препятствует промышленному производству водорода.

В основу изобретения положена задача создания более производительного альтернативного способа получения водорода.

Техническим результатом является повышение производительности за счет получения водорода высокотемпературным синтезом.

В качестве альтернативы предлагается метод высокотемпературного синтеза водорода на основе горения флюидизированного инертным газом нанопорошка алюминия в парах воды.

Термин "флюидизированный алюминий" обозначает нанопорошок чистого алюминия в инертном газе (последний препятствует образованию оксидной пленки).

Поставленная задача решается тем, что алюминий в виде нанопорошка псевдоожижают сжатым инертным газом и приводят в контакт с водой в виде водяного пара в реакционной зоне, в результате чего флюидизированный нанопорошок алюминия самовоспламеняется и горит в водяном паре в объеме реакционной зоны, тем самым с получением высоких температур для газификации наночастиц алюминия и образованием высокотемпературным синтезом в газофазной реакционной среде молекулярного водорода, который отделяют с помощью мембраны в качестве целевого продукта от побочных, таких как остатков паров воды, инертного газа и дополнительных продуктов, полученных при синтезе, например, дисперсных частиц кристаллического корунда.

Принципиальная схема получения водорода высокотемпературным синтезом водорода показана на рисунке.

Ее основным элементом является адиабатически устроенная реакционная зона высокотемпературного химического реактора 1, имеющего впуск 2 для нанопорошка алюминия псевдоожиженного сжатым инертным газом, впуск 3 для водяного пара и выпуск 4 для вывода остатков паров воды, инертного газа и дополнительных продуктов, полученных при синтезе, например, дисперсных частиц кристаллического корунда.

Способ осуществляют следующим образом.

Инертный газ, сжатый до давления в несколько атмосфер, подают непрерывным потоком в емкость 5 с нанопорошком алюминия с достижением его псевдоожижения (термин "псевдоожижение" означает полную увлекаемость газовым потоком нанопорошка алюминия).

Псевдоожиженный сжатым инертным газом нанопорошок алюминия и вода в виде водяного пара поступают в реакционную зону высокотемпературного химического реактора.

Образование водяных паров может быть достигнуто, например, за счет впрыска воды, предварительно прогретой до температуры, близкой к температуре кипения, в реакционную зону через форсунки с перепадом в несколько атмосфер. Адиабатическое устройство реакционной зоны может быть обеспечено, например, устройством ее терморубашек. В реакционной зоне высокотемпературного химического реактора 7 флюидизированный инертным газом нанопорошок алюминия при контакте с водяным паром самовоспламеняется и горит в водяном паре в объеме реакционной зоны.

При горении алюминия в парах воды развиваются весьма высокие температуры - более 3000К. Получение высоких температур приводит к газификации наночастиц алюминия и образованию высокотемпературным синтезом в газофазной реакционной среде молекулярного водорода. Эксперименты показывают, что наночастицы алюминия при высоких температурах ~1800К быстро газифицируются с образованием атомарного алюминия. Благодаря этому горение алюминия происходит через газофазные реакции, протекающие во всем объеме реакционной зоны, а не на поверхности частиц. Это существенно повышает производительность способа.

Инертный газ препятствует образованию оксидной пленки. Кроме того, на входе в реакционную зону инертный газ используется для псевдоожижения нанопорошка алюминия. На выходе из нее тот же инертный газ играет роль дисперсионной среды двухфазных продуктов горения. Полученный водород может быть отделен с помощью мембраны, например, платиновой, в качестве целевого продукта от побочных, таких как остатков паров воды, инертного газа и дополнительных продуктов, полученных при синтезе, например, дисперсных частиц кристаллического корунда. Кроме того, поскольку крупные оксидные частицы Аl2О3, отрицательно влияющие на работу установки, не успевают образоваться за время сгорания ~0.1 с, на выходе получается кристаллический порошок (корунд) микронного размера, имеющий большое практическое значение, сопутствующее получение которого могло бы удешевить производство основного продукта - водорода.

При модельном осуществлении способа в качестве инертного газа использовали аргон при давлении 10 атм, соотношение нанопорошка алюминия и паров воды применяют близким к стехиометрическому между ними, при этом температура синтеза молекулярного водорода составляет не менее 1800К(Аr), содержание аргона (Аr) в смеси составляет по массе 80%. Скорость потока в высокотемпературном реакторе 1 составляла U=10 м/с и выбрана из условия, чтобы его длина оставалась в пределах 1-10 м, а сам процесс сгорания проходил в изобарном режиме. Расчеты показывают, что при начальных условиях Т=1800К, Р=10 атм, α=1-2 и при 80% (по массе) Аr в смеси на входе в высокотемпературный реактор (но после газификации Аl) выход водорода составляет примерно 10-12% от массы Аl, а выход частиц корунда - около 12-14% по массе от суммарного выхода всех продуктов горения.

Изобретение может быть использовано для производства водорода.

Похожие патенты RU2524391C1

название год авторы номер документа
Способ получения водорода 2023
  • Меркулов Олег Владимирович
  • Шамсутов Иван Винарисович
RU2812628C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА МЕТАЛЛА 2011
  • Новиков Александр Николаевич
RU2489232C1
ГИБРИДНЫЙ РАКЕТНО-ПРЯМОТОЧНЫЙ ВОЗДУШНО-РЕАКТИВНЫЙ АЭРОКОСМИЧЕСКИЙ ДВИГАТЕЛЬ 2014
  • Старик Александр Михайлович
  • Кулешов Павел Сергеевич
  • Савельев Александр Михайлович
RU2563641C2
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА ГИДРИДА ТИТАНА 2014
  • Жигач Алексей Николаевич
  • Лейпунский Илья Овсеевич
  • Березкина Надежда Георгиевна
  • Кусков Михаил Леонидович
  • Афанасенкова Елена Сергеевна
RU2616920C2
СПОСОБ И УСТРОЙСТВО ДЛЯ НЕПРЕРЫВНОГО ПРОИЗВОДСТВА НАНОДИСПЕРСНЫХ МАТЕРИАЛОВ 2008
  • Гусев Сергей Владимирович
  • Провоторов Михаил Викторович
  • Харитонов Евгений Леонидович
  • Гусев Александр Васильевич
  • Несмелов Александр Сергеевич
  • Шакуров Валерий Владимирович
RU2397139C1
СПОСОБ РАБОТЫ ГАЗОТУРБИННОЙ УСТАНОВКИ НЕПРЕРЫВНОГО ДЕЙСТВИЯ 2015
  • Старик Александр Михайлович
  • Кулешов Павел Сергеевич
RU2599407C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА 2010
  • Носырев Дмитрий Яковлевич
  • Плетнев Александр Игоревич
RU2432316C1
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА КАРБИДА ЖЕЛЕЗА 2020
  • Жигач Алексей Николаевич
  • Лейпунский Илья Овсеевич
  • Березкина Надежда Георгиевна
  • Кусков Михаил Леонидович
  • Афанасенкова Елена Сергеевна
RU2756555C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО НАНОПОРОШКА ZrB2 - SiC 2023
  • Самохин Андрей Владимирович
  • Алексеев Николай Васильевич
  • Кирпичев Дмитрий Евгеньевич
  • Синайский Михаил Александрович
RU2821525C1
Способ получения нанопорошка карбонитрида титана 2015
  • Гарбузова Алина Константиновна
  • Галевский Геннадий Владиславович
  • Руднева Виктория Владимировна
RU2612293C1

Иллюстрации к изобретению RU 2 524 391 C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА

Изобретение относится к области химии, а более точно к способу получения водорода. Способ получения водорода путем взаимодействия алюминия и воды представляет собой псевдоожижижение алюминия в виде нанопорошока потоком сжатого инертного газа и приведение в контакт полученного реагента с водяным паром в реакционной зоне, в результате чего флюидизированный нанопорошок алюминия самовоспламеняется и горит в водяном паре в объеме реакционной зоны, с получением высоких температур для газификации наночастиц алюминия и образованием газофазной реакционной среды с протеканием в ней высокотемпературного синтеза и получением молекулярного водорода, который непрерывно отделяют с помощью мембраны, селективно проницаемой для водорода, в качестве целевого продукта от побочных продуктов выхлопа реактора, таких как остатки паров воды, инертного газа и дополнительных продуктов, полученных при синтезе, например, дисперсных частиц кристаллического корунда. Изобретение обеспечивает повышение производительности получения водорода. 3 з.п. ф - лы, 1 ил.

Формула изобретения RU 2 524 391 C1

1. Способ получения водорода путем взаимодействия алюминия и воды, отличающийся тем, что алюминий в виде нанопорошока псевдоожижают потоком сжатого инертного газа и полученный реагент приводят в контакт с водяным паром в реакционной зоне, в результате чего флюидизированный нанопорошок алюминия самовоспламеняется и горит в водяном паре в объеме реакционной зоны, тем самым с получением высоких температур для газификации наночастиц алюминия и образованием газофазной реакционной среды с протеканием в ней высокотемпературного синтеза с получением молекулярного водорода, который непрерывно отделяют с помощью мембраны, селективно проницаемой для водорода, в качестве целевого продукта от побочных продуктов выхлопа реактора, таких как остатки паров воды, инертного газа и дополнительных продуктов, полученных при синтезе, например, дисперсных частиц кристаллического корунда.

2. Способ получения молекулярного водорода по п.1 отличающийся тем, что при отделении водорода используют платиновую мембрану.

3. Способ получения молекулярного водорода по п.1 отличающийся тем, что в качестве инертного газа применяют аргон, который сжимают до давления порядка 10 атм, соотношение нанопорошка алюминия и паров воды применяют близким к стехиометрическому между ними, при этом температура синтеза молекулярного водорода составляет не менее 1800К.

4. Способ получения молекулярного водорода по п.3 отличающийся тем, что содержание аргона в смеси составляет по массе 80%.

Документы, цитированные в отчете о поиске Патент 2014 года RU2524391C1

СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДОВ ИЛИ ОКСИДОВ АЛЮМИНИЯ И ВОДОРОДА 2003
  • Берш А.В.
  • Жуков Н.Н.
  • Иванов Ю.Л.
  • Иконников В.К.
  • Мазалов Ю.А.
  • Рыжкин В.Ю.
  • Трубачев О.А.
RU2223221C1
СПОСОБ ПОЛУЧЕНИЯ БЕМИТА И ВОДОРОДА 2007
  • Берш Александр Валентинович
  • Иванов Юрий Леонидович
  • Мазалов Юрий Александрович
  • Корманова Светлана Ивановна
  • Лисицын Алексей Викторович
RU2363659C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА 2010
  • Носырев Дмитрий Яковлевич
  • Плетнев Александр Игоревич
RU2430011C1
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1

RU 2 524 391 C1

Авторы

Кулешов Павел Сергеевич

Савельев Александр Михайлович

Старик Александр Михайлович

Даты

2014-07-27Публикация

2012-12-27Подача