Изобретение относится к химической промышленности, в частности к способам получения газообразного водорода.
Известен способ получения водорода, включающий взаимодействие водяного пара с элементарным железом и/или с его низшим окислом в кипящем слое при 500-650°С, давлении 0,1-0,4 МПа, регенерацию образующихся окислов железа, контактированием их с твердым углеродосодержащим материалом при 800-1100°С с получением газов регенерации и восстановленных окислов железа и возврат последних на стадию взаимодействия, газы регенерации возвращают на стадию регенерации, а окислы железа на стадии регенерации используют с размером частиц 50·10-6-140·10-6 м [патент РФ №1125186 МПК С01В 3/10, опубл. 23.11.1984 г. БИ №43 «Способ получения водорода», авторы Лебедев В.В. и др.].
Недостатком способа является сложность процесса, низкая производительность и большие энергозатраты.
Известен способ получения водорода путем конверсии в реакторе водяного пара в среде раскаленного железа до окислов железа и газообразного водорода, в котором используют реактор, состоящий из рубашки охлаждения и высоковольтного разрядника с двумя электродами, один из которых изготовлен из технического железа, в баке кипятят дистиллированную воду, образуя насыщенный пар, его подают в рубашку охлаждения реактора, образуя перегретый пар, на высоковольтный разрядник подают переменный ток напряжением 3,6 кВ, одновременно через форсунку в разрядный промежуток вводят перегретый пар, а образовавшиеся окислы железа при помощи вибрации сбрасывают в сборную емкость; влажный водород выпускают из реактора в конденсатор, охлаждаемый водой из системы водоснабжения, конденсат сбрасывают, после этого предварительно осушенный водород подвергают окончательной осушке в регенерируемых силикагелевых патронах, затем водород через микропористый фильтр раздают потребителям в интерметаллидных компрематорах, которые при десорбции водорода обеспечивают его чистоту до 99,99 об.%. [патент РФ №2191742 МПК С01В 3/00, С01В 3/10 опубл. 27.10.2002 г. БИ №30 «Способ получения водорода», авторы Адамович Б.А. и др.].
Недостатком способа является низкая производительность и большие энергозатраты.
Данное техническое решение выбрано в качестве прототипа.
Техническим результатом является повышение производительности, снижение энергозатрат и повышение чистоты водорода.
Технический результат достигается тем, что в способе получения водорода в реактор с электродами вводят алюминиевые электроды и в зону рассположения электродов подают воду со следами гидроокисей щелочных металлов, а на электроды подают постоянный ток напряжением 30-110 В и силой 5-10 А, создавая между электродами вольтову дугу, которая диспергирует алюминиевые электроды и распыляет их в вольтовой дуге с образованием алюминиевого нанопорошка, который взаимодействует с водой, образуя оксиды алюминия и газообразный водород, причем при погасании вольтовой дуги алюминиевые электроды перемещают до ее возникновения, а воду со следами гидроокисей щелочных металлов добавляют по мере выработки.
Реакцию взаимодействия алюминия с водой производят на поверхности алюминиевого нанопорошка и на активной поверхности электродов при температуре 600-700°С. Подача постоянного тока силой 5-10 А и напряжением 30-110 В обеспечивает образование между электродами под водой вольтовой дуги, которая, разрушая электроды, делает их поверхность активной и образует высокотемпературный алюминиевый нанопорошок с развитой активной поверхностью без защитной оксидной пленки. Высокотемпературный алюминиевый нанопорошок размером 70-120 нм позволяет быстро провести реакцию окисления алюминия с выделением водорода.
На фиг.1 представлена схема получения водорода.
Реактор 1 состоит из рубашки охлаждения 2, двух электродов 3 и 4, магистрали выхода водорода 5, магистрали выхода продуктов реакции 6, источника питания 7, реостата 8 и амперметра 9.
В реактор 1 с двумя алюминиевыми электродами 3, 4 подают воду, погружая электроды в воду. На электроды от источника питания 7 подают постоянный ток силой 5-10 А и напряжением 30-110 В. При прохождении тока через электроды между ними под водой возникает вольтова дуга. При этом у электродов образуется облако высокодисперсного металла, таким образом, диспергируют оба электрода - катод и анод. Высокодисперсный алюминий лишен оксидной пленки, поверхность алюминия становится активной и взаимодействует с водой, образуя водород и оксиды алюминия, причем реакция окисления алюминия идет как по поверхности нанопорошка, так и на активной поверхности обоих электродов.
При этом реакция окисления алюминия идет по двум уравнениям:
Образовавшийся алюминиевый нанопорошок прореагирует полностью, а электроды только по поверхности. С целью увеличения времени образования оксидной пленки на электродах в воду вводят следы гидроокисей щелочных металлов. Поверхность алюминиевых электродов будет длительное время активной и производительность электродов по водороду будет увеличена.
Оксиды алюминия выводят из реактора по магистрали выхода продуктов реакции 6, а водород выводят из реактора по магистрали выхода водорода 5.
Регулировку силы тока и напряжения осуществляют реостатом 8 и контролируют амперметром 9. Охлаждение реактора осуществляют циркулированием воды через рубашку охлаждения 2 реактора.
Пример реализации способа. Осуществляют способ получения водорода диспергированием алюминиевых электродов, распыляя их в вольтовой дуге. Для осуществления способа используют алюминиевые электроды, например, диаметром 5 мм. В реактор наливают воду со следами гидроокисей щелочных металлов и встречно вводят алюминиевые электроды с образованием зазора между ними 2-5 мм, причем электроды находятся в воде. Затем на алюминиевые электроды от источника питания подают постоянный ток силой 5-10 А и напряжением 30-110 В, при этом между электродами возникает вольтова дуга. Электроды распыляются в месте образования вольтовой дуги, образуя облако нанопорошка алюминиевого металла размером 70-120 нм. Зазор между электродами увеличивается, после чего вольтова дуга исчезает. Алюминиевый нанопорошок вступает в реакцию с водой с образованием газообразного водорода и окислов алюминия. Затем алюминиевые электроды встречно перемещают до образования вольтовой дуги и процесс получения водорода повторяется, при этом воду со следами щелочных металлов добавляют в реактор по мере выработки.
Таким образом, из 1 кг алюминиевой проволоки получаем 1200 л чистого водорода.
Предлагаемый способ позволяет увеличить выход водорода, повысить производительность получения водорода в несколько порядков и снизить энергозатраты на его получение в 3 раза.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА | 2012 |
|
RU2524391C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА | 2010 |
|
RU2430011C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА | 2010 |
|
RU2428371C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА | 2010 |
|
RU2428372C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА | 2010 |
|
RU2424973C1 |
СПОСОБ И УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ НАНОПОРОШКОВ С ИСПОЛЬЗОВАНИЕМ ТРАНСФОРМАТОРНОГО ПЛАЗМОТРОНА | 2009 |
|
RU2406592C2 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА | 2010 |
|
RU2429191C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА КАРБИДА ЖЕЛЕЗА | 2020 |
|
RU2770102C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА КАРБИДА ЖЕЛЕЗА | 2020 |
|
RU2756555C1 |
СПОСОБ РЕГЕНЕРАЦИИ АВТОМОБИЛЬНЫХ КАТАЛИЗАТОРОВ | 2011 |
|
RU2464088C1 |
Изобретение относится к области химии и может быть использовано при получении водорода. В реактор вводят алюминиевые электроды и в зону расположения электродов подают воду со следами гидроокисей щелочных металлов. На электроды подают постоянный ток напряжением 30-110 В и силой 5-10 А, создавая между электродами вольтову дугу, которая диспергирует алюминиевые электроды и распыляет их в вольтовой дуге с образованием алюминиевого нанопорошка, который взаимодействует с водой, образует оксиды алюминия и газообразный водород. При погасании вольтовой дуги алюминиевые электроды перемещают до ее возникновения, а воду со следами гидроокисей щелочных металлов добавляют по мере выработки. Изобретение позволяет повысить производительность, снизить энергозатраты и повысить чистоту водорода. 1 ил.
Способ получения водорода в реакторе с электродами, отличающийся тем, что в реактор вводят алюминиевые электроды и в зону расположения электродов подают воду со следами гидроокисей щелочных металлов, а на электроды подают постоянный ток напряжением 30-110 В и силой 5-10 А, создавая между электродами вольтову дугу, которая диспергирует алюминиевые электроды и распыляет их в вольтовой дуге с образованием алюминиевого нанопорошка, который взаимодействует с водой, образуя оксиды алюминия и газообразный водород, причем при погасании вольтовой дуги алюминиевые электроды перемещают до ее возникновения, а воду со следами гидроокисей щелочных металлов добавляют по мере выработки.
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА | 2000 |
|
RU2191742C2 |
Способ получения водорода | 1982 |
|
SU1125186A1 |
Стеклянный изолятор | 1946 |
|
SU72360A1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ОКСИДА АЛЮМИНИЯ | 1994 |
|
RU2078045C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА | 1991 |
|
RU2032611C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ БЕТОННОЙ СМЕСИ | 2007 |
|
RU2344110C1 |
Гидравлическая стойка двойной телескопичности индивидуальной крепи | 1989 |
|
SU1645539A1 |
US 6506360 В1, 14.01.2003 | |||
US 7235226 В2, 26.06.2007. |
Авторы
Даты
2011-10-27—Публикация
2010-02-09—Подача