ПОЛИМЕРНЫЙ ПРОТОНПРОВОДЯЩИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ Российский патент 2014 года по МПК C08L29/04 B01D71/38 H01G9/25 H01M8/02 

Описание патента на изобретение RU2529187C1

Изобретение относится к области электрохимического приборостроения на основе твердотельной электроники, а именно к технологии получения полимерных протонпроводящих композитов, и может быть использовано при создании различных электрохимических приборов и устройств, в том числе суперконденсаторов.

Полимерные протонпроводящие композиционные материалы (полимерные электролиты), приготовленные по растворной технологии с твердым электролитом, диспергированным в полимерной матрице, широко применяются для изготовления электролитических (электрохимических) конденсаторов высокой емкости.

Из заявки на патент США №5986878 (МКП: H01G 9/02; H01G 9/025; H01G 9/04; H01G 9/042) известен твердый электролит, используемый в электрохимическом конденсаторе в виде нанесенного на электроды пленочного покрытия и включающий водный раствор поликислоты с массовой долей не менее 60%.

Известен также электролит для электролитического конденсатора (JPH09115784 (А), МКП: H01G 9/035), обладающий высокой электрической проводимостью и включающий поликислоту (вольфрамофосфорную, вольфрамокремниевую, фосфорномолибденовую, кремниймолибденовую, кремнийвольфрамомолибденовую, фосфорновольфрамомолибденовую или фосфорнованадиймолибденовую) и электролит, приготовленный растворением амидной соли карбоновой (карбоксиловой) кислоты.

Из патента Японии JPH0748458 (В2) (МПК: H01G 9/02; H01G 9/035) известен высокоэффективный электролит, в котором фосфорная кислота и фосфористая кислота или одна из их солей, борная кислота или ее соль, полисахарид, такой как маннит, сорбит или подобные соединения, фосфорновольфрамовая кислота, кремнийвольфрамовая кислота или их соли, добавлены к электролиту, главным растворителем которого является гамма-бутиролактон и главным компонентом раствора - органическая соль амина.

Из заявок на патенты Кореи №20120050302 (МКП: C07F 11/00; C08J 7/04; Н01В 1/06; Н01М 8/02) и №20080022675 (МКП: C08J 5/22; С08К 3/00; С08К 3/34; C08L 61/00) известна композитная органическая-неорганическая полимерная мембрана с добавлением различных гетерополикислот для увеличения проводимости при использовании в топливных элементах.

Однако известные технические решения не позволяют достичь высокой ионной проводимости, что не дает возможности использовать их в качестве твердых электролитов в конденсаторах высокой емкости. Кроме того, данные технические решения характеризуются высокой себестоимостью, сложным синтезом, а также использованием токсичных веществ в качестве сырьевых материалов и компонентов.

Наиболее близким к заявляемому техническому решению является полимерный протонпроводящий электролит (патент РФ №2400294, МПК: B01D 71/38, C08L 29/04, Н01М 8/02) на основе полимерной линейной матрицы, полученной из водного 5% раствора поливинилового спирта с добавлением в нее протонпроводящего твердого электролита в виде фосфорно-вольфрамовой кислоты и пластификатора - глицерина при следующем соотношении компонентов (мас.%): поливиниловый спирт 66,6-85,7; фосфорно-вольфрамовая кислота 6,25-18,75, глицерин - остальное.

Основным недостатком указанного изобретения также является недостаточно высокое значение ионной проводимости композита для применения его в суперконденсаторах (величина ионной проводимости определяет внутреннее сопротивление суперконденсаторов и, как следствие, их мощность).

Задачей изобретения является создание полимерного протонпроводящего композиционного материала (твердого электролита) с высокой ионной проводимостью и максимально низкой электронной составляющей проводимости, обеспечивающего улучшение мощностных характеристик суперконденсаторов или других приборов твердотельной электроники и увеличение длительности хранения их заряда.

Техническим результатом является повышение ионной проводимости и уменьшение электронной проводимости полимерного протонпроводящего композиционного материала.

Поставленная задача решается тем, что полимерный протонпроводящий композиционный материал включает полимерную линейную матрицу, представляющую собой водный 2-9%-ный раствор поливинилового спирта (ПВС) и диспергированный в ней протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты (ФВК) и пластификатора, в качестве которого используют глицерин. При этом, если фосфорно-вольфрамовая кислота взята в количестве 19-50 мас.%, то содержание ПВС составляет 38-69 мас.%, а глицерина - остальное. Водный раствор поливинилового спирта может содержать наночастицы серебра размером от 20 до 100 нм в концентрации 40-100 мг/л.

Заявляемый полимерный протонпроводящий композит получают следующим образом.

Приготавливают водный 2-9%-ный раствор ПВС (2-9 г ПВС растворяют в 90 мл дистиллированной воде и доводят конечный объем раствора до 100 мл), для этого ПВС предварительно оставляют набухать в течение суток в дистиллированной воде, а затем для полного его растворения выдерживают на магнитной мешалке при температуре 80-90°С в течение 8-16 часов. Далее, в полученный раствор добавляют навеску ФВК, растворяют на магнитной мешалке и после полного растворения добавляют глицерин. Все компоненты тщательно перемешивают и полученную смесь выдерживают в течение 2-3 суток при комнатной температуре при постоянном перемешивании. Данную смесь наносят (например, поливным способом) на твердую подложку (титановый электрод) для получения эластичной пленки.

Для получения полимерного композита с наночастицами серебра поливиниловый спирт растворяют в дистиллированной воде, содержащей наночастицы серебра размером от 20 до 100 нм и концентрацией 40-100 мг/л. Для этого ПВС предварительно оставляют набухать в течение суток в водном растворе наночастиц серебра, а затем для полного его растворения также выдерживают на магнитной мешалке при температре 80-100°С в течение 8-20 часов. Дальнейшие действия по изготовлению композитных пленок осуществляют в соответствии с вышеприведенным описанием.

В таблицах 1, 2 приведены примеры составов заявляемого композита, а также значения ионной и электронной проводимостей в зависимости от количествнного содержания компонентов, при этом в таблице 2 представлены значения проводимостей для составов с наночастицами серебра, добавленными в водный 5% раствор ПВС в концентрации 50 мг/л.

Таблица 1 N п/п Состав, мас.% Ионная проводимость, σ, Ом-1см-1 Электронная проводимость, σ, Ом-1см-1 1 11%ФВК+77%ПВС+12%глицерин 4,05·10-3 1,5·10-7 2 15%ФВК+73%ПВС+12%глицерин 5,9·10-3 2,1·10-7 3 19%ФВК+69%ПВС+12%глицерин 7,96·10-3 1,7·10-7 4 20%ФВК+68%ПВС+12%глицерин 8,07·10-3 1,1·10-7 5 30%ФВК+58%ПВС+12%глицерин 1,08·10-2 1,2·10-7 6 40%ФВК+48%ПВС+12%глицерин 1,25·10-2 1,9·10-7 7 5 0%ФВК+38%ПВС+12%глицерин 1,31·10-2 1,6·10-7 8 60%ФВК+28%ПВС+12%глицерин 1,33·10-2 1,2·10-7

Параметры ионной проводимости определяли методом импедансной спектрометрии с использованием импедансметра Элине Z-2000 в интервале частот от 1 Hz до 2 MHz на двухэлектродных симметричных ячейках с Ti контактами с последующим анализом полученных годографов импеданса графоаналитическим методом при температуре 298 К и относительной влажности Н=52%. Электронную составляющую проводимости определяли на потенциостате P30I методом Вагнера.

Как видно из приведенных результатов, протонпроводящие полимерные композиты заявленного состава (см. Таблицу 1 примеры 3-7) обладают повышенной по сравнению с прототипом ионной проводимостью и имеют порядок 10-2 Ом-1см-1, при этом электронная проводимость не превышает 2,1·10-7 Ом-1см-1.

Таблица 2 N п/п Состав, мас.% Ионная проводимость, σ, Ом-1см-1 Электронная проводимость, σ, Ом-1см-1 1 19%ФВК+69%ПВС+12%глицерин 8,22·10-3 4,1·10-9 2 20%ФВК+68%ПВС+12%глицерин 8,07·10-3 7,4·10-9 3 30%ФВК+58%ПВС+12%глицерин 1,16·10-2 6,1·10-9 4 40%ФВК+48%ПВС+12%глицерин 1,36·10-2 8,9·10-9 5 5 0%ФВК+38%ПВС+12%глицерин 1,25·10-2 5,8·10-9

Как видно из Таблицы 2, протонпроводящий твердый электролит, приготовленный на водном растворе наночастиц серебра, имеет более низкую электронную проводимость, которая не превышает 8,9·10-9 Ом-1см-1.

Диапазон заявленных концентраций компонентов в предложенном протонпроводящем твердом электролите определяется тем, что концентрации компонентов ниже заявленных (см. Таблица 1, примеры 1, 2) существенно снижают значение ионной проводимости (σ~5·10-3 Ом-1см-1), при концентрациях выше заявленных ионная проводимость не изменяется от увеличения концентрации ФВК и составляет в среднем 1,25·10-2 Ом-1см-1. Механические свойства полученного полимерного электролита в связи с увеличением доли глицерина удовлетворяют техническим условиям применения в суперконденсаторах.

Таким образом, настоящее техническое решение позволяет получить композиционный материал, в котором удается реализовать высокую ионную проводимость и низкую электронную составляющую проводимости, что позволяет улучшить не только мощностные характеристики суперконденсаторов или других приборов твердотельной электроники, но и увеличить длительность сохранности их заряда.

Похожие патенты RU2529187C1

название год авторы номер документа
СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ПРОТОНПРОВОДЯЩЕГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2014
  • Гоффман Владимир Георгиевич
  • Гороховский Александр Владиленович
  • Горшков Николай Вячеславович
  • Слепцов Владимир Владимирович
  • Федоров Федор Сергеевич
  • Третьяченко Елена Васильевна
RU2565688C1
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2015
  • Гоффман Владимир Георгиевич
  • Гороховский Александр Владиленович
  • Горшков Николай Вячеславович
  • Слепцов Владимир Владимирович
  • Федоров Федор Сергеевич
  • Третьяченко Елена Васильевна
RU2600634C1
Состав для получения полимерного композиционного материала 2015
  • Гоффман Владимир Георгиевич
  • Гороховский Александр Владиленович
  • Горшков Николай Вячеславович
  • Слепцов Владимир Владимирович
  • Третьяченко Елена Васильевна
  • Ковнев Алексей Владимирович
RU2613503C1
ПРОТОНПРОВОДЯЩИЙ ПОЛИМЕРНЫЙ КОМПОЗИТ 2009
  • Михайлова Антонина Михайловна
  • Колоколова Елена Викторовна
  • Никитина Людмила Владимировна
RU2400294C1
Суперконденсаторная ячейка 2016
  • Гороховский Александр Владиленович
  • Гоффман Владимир Георгиевич
  • Жуков Николай Дмитриевич
  • Митрохин Валерий Викторович
  • Скибина Юлия Сергеевна
RU2646531C1
ПЛЕНОЧНЫЙ КОНДЕНСАТОР 2017
  • Слепцов Владимир Владимирович
  • Гофман Владимир Георгиевич
  • Гороховский Александр Владиленович
  • Ву Дык Хоан
RU2649403C1
Способ получения гибридной электролитической мембраны на основе сшитого поливинилового спирта 2020
  • Лёзова Ольга Сергеевна
  • Загребельный Олег Анатольевич
  • Иванова Александра Геннадьевна
  • Шилова Ольга Алексеевна
RU2738721C1
КОМПОЗИТНАЯ ПРОТОНПРОВОДЯЩАЯ МЕМБРАНА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2007
  • Старков Виталий Васильевич
  • Алдошин Сергей Михайлович
  • Добровольский Юрий Анатольевич
  • Лысков Николай Викторович
  • Сангинов Евгений Александрович
  • Писарева Анна Владимировна
  • Волков Евгений Витальевич
RU2373990C2
МУЛЬТИКАНАЛЬНЫЙ ЭЛЕКТРОД 2020
  • Байняшев Алексей Александрович
  • Викулова Мария Александровна
  • Гороховский Александр Владиленович
  • Горшков Николай Вячеславович
  • Гоффман Владимир Георгиевич
  • Третьяченко Елена Васильевна
  • Цыганов Алексей Русланович
RU2751537C1
ПЛЕНОЧНЫЙ КОНДЕНСАТОР 2012
  • Слепцов Владимир Владимирович
RU2525825C1

Реферат патента 2014 года ПОЛИМЕРНЫЙ ПРОТОНПРОВОДЯЩИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Настоящее изобретение относится к полимерным протонпроводящим композиционным материалам. Описан полимерный протонпроводящий композиционный материал, включающий полимерную линейную матрицу, представляющую собой водный 2-9% раствор поливинилового спирта, содержащий наночастицы серебра размером 20-100 нм в концентрации 40-100 мг/л и диспергированный в ней протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты и пластификатора в виде глицерина при следующем соотношении компонентов, мас.%: водный раствор поливинилового спирта 38-69, фосфорно-вольфрамовая кислота 19-50, глицерин остальное. Технический результат - полимерный протонпроводящий композиционный материал, обладающий высокой ионной проводимостью и максимально низкой электронной составляющей проводимости, обеспечивающий улучшение мощностных характеристик суперконденсаторов или других приборов твердотельной электроники, и увеличение длительности хранения их заряда. 2 табл., 13 пр.

Формула изобретения RU 2 529 187 C1

1. Полимерный протонпроводящий композиционный материал, включающий полимерную линейную матрицу, представляющую собой водный 2-9% раствор поливинилового спирта, содержащий наночастицы серебра размером 20-100 нм в концентрации 40-100 мг/л, и диспергированный в ней протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты и пластификатора в виде глицерина при следующем соотношении компонентов, мас.%:
Водный раствор поливинилового спирта 38-69 Фосфорно-вольфрамовая кислота 19-50 Глицерин остальное

Документы, цитированные в отчете о поиске Патент 2014 года RU2529187C1

ПРОТОНПРОВОДЯЩИЙ ПОЛИМЕРНЫЙ КОМПОЗИТ 2009
  • Михайлова Антонина Михайловна
  • Колоколова Елена Викторовна
  • Никитина Людмила Владимировна
RU2400294C1
С.W
Lin, R
Thangamuthu, C.J
Yang, Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications // Journal of membrane science, may 2005, v.253, p.23-31,
С.С.Иванчев, С.В.Мякин, Полимерные мембраны для топливных элементов: получение структура,

RU 2 529 187 C1

Авторы

Гоффман Владимир Георгиевич

Гороховский Александр Владиленович

Слепцов Владимир Владимирович

Горшков Николай Вячеславович

Телегина Оксана Станиславовна

Ковнев Алексей Владимирович

Федоров Федор Сергеевич

Даты

2014-09-27Публикация

2013-05-14Подача