ОГНЕУПОРНАЯ МАССА ДЛЯ ФУТЕРОВКИ ТЕПЛОВЫХ АГРЕГАТОВ Российский патент 2014 года по МПК C04B35/106 C04B35/66 

Описание патента на изобретение RU2530935C2

Изобретение относится к огнеупорной промышленности. Оно может быть использовано для выполнения защитных обмазок, а также монолитных футеровок высокотемпературных тепловых агрегатов.

Известна огнеупорная масса, включающая электрокорунд, цемент высокоглиноземистый и двуокись циркония [1].

Недостатком этой массы являются невысокие значения механической прочности и термостойкости, которые приводят к отслаиванию и растрескиванию защитной обмазки и огнеупорного монолита.

Наиболее близкой является огнеупорная масса [2], включающая, масс.%:

Электрокорунд 67-88.5 Цемент высокоглиноземистый 5-10 Циркон 5-20 Водорастворимое соединение алюминия 1.5-3

Недостатком этой массы являются низкие термостойкость, прочность при сжатии и изгибе.

Повышение этих показателей огнеупорной массы достигается тем, что она дополнительно вместо водорастворимого соединения алюминия содержит водный раствор полисиликата натрия, в вместо циркона - цирконовый концентрат при следующем соотношении компонентов, масс.%:

Электрокорунд 65-87.5 Цемент высокоглиноземистый 5-10 Цирконовый концентрат 5-20 Водный раствор полисиликата натрия 2.5-5

Полисиликат натрия с модулем 6.5 получали в лабораторных условиях согласно пат. 2124475 путем взаимодействия силиката натрия с диоксидом кремния при 95°C. При этом взаимодействие осуществлялось путем введения в 20%-ный водный раствор силиката натрия 16 масс.% гидрозоля диоксида кремния, которые брали в соотношении 1:1.5 соответственно, с последующей выдержкой 0.5 ч.

В качестве цирконсодержащего компонента нами выбран цирконовый концентрат, имеющий следующий химсостав, масс.%: SiO2 - 34,1; Al2O3 - 1,5; Fe2O3 - 0,21; CaO - 0,1; MgO - 0,1; ZrO2 - 63,4; ТiO2; прочие примеси - 0,39.

Массу приготавливали в следующей последовательности. Вначале водный раствор полисиликата натрия перемешивали совместно с высокоглиноземистым цементом до получения однородной смеси. Затем в полученную смесь вводили цирконовый концентрат и электрокорунд при непрерывном смешивании до получения однородной массы.

Из огнеупорной массы для испытания изготавливались образцы разных составов, приведенные в табл.1.

Испытания образцов на термостойкость проводились по ГОСТ, результаты которых приведены в табл.2.

Таблица 1 Составляющие массы Состав масс, масс.% известный предлагаемый 1 2 3 4 5 6 Злектрокорунд 85 77 67 87.5 75 65 Высокоглиноземистый цемент 5 10 10 5 10 10 Циркон 5 10 20 - - - Цирконовый концентрат 5 10 20 Сернокислый алюминий 5 3 3 - - - Водный раствор полисиликата натрия с модулем 6,5 2.5 5 5

Таблица 2 Свойства масс Показатели известный предлагаемый 1 2 3 4 5 6 Предел прочности при сжатии необожженных образцов, МПа 8.93 3.46 11.0 13.09 5.05 14.88 Предел прочности при сдвиге необожженных образцов, МПа 1.96 3.16 2.34 2.94 4.34 3.21 Предел прочности при сдвиге обожженных образцов при 1650°C, МПа 3.72 3.52 4.48 5.67 5.13 6.56 Термостойкость теплосмен (1500°C-20°C вода) 4-8 4-8 4-8 6-12 7-13 7-14

Анализ результатов, приведенных в табл.2 показывает, что введение композиции из цирконового концентрата и полисиликата натрия с модулем 6.5 в состав огнеупорной массы существенно повышает прочность и термостойкость огнеупорного материала на их основе.

Преимущество композиции из цирконового концентрата и полисиликата натрия заключается в их способности превращаться в устойчивые фазы при высоких температурах. На рентгенограммах этих композиций, нагретых до 1600°C, обнаружены линии, интенсивность которых соответствует в основном диоксиду циркония ZiO2 (dA - 3.69; 3,78; 2,86), силициду циркона ZrSi2 (dA - 3,75; 2,63; 2,36), и кристобалиту SiO2 (dA - 4.10). Аморфный кремнезем, образовавшийся из полисиликата натрия, при высоких температурах переходит в кристобалит.

При смешивании и формовании изделий на основе этих циркон-силикат-натриевых композиций формируется специфическая пространственная структура, характерной особенностью которой является локальность контактных омоноличивающих швов, т.е. отсутствие сплошного шва.

Такая схема омоноличивания обеспечивает, с одной стороны, высокую прочность структуры, а с другой стороны, локализует распространение трещин. Последнее очень важно для огнеупорных материалов, работающих в условиях циклических теплосмен, так как способствует повышению термостойкости, что подтверждается результатами опытов, приведенных в табл.2.

Повышение содержания водного раствора полисиликата натрия сверх приведенных в табл.1 значений, приводит к снижению прочности при нагреве за счет повышения содержания Na2O, входящего в состав полисиликата натрия, которая, являясь плавнем, снижает огнеупорность, а также приводит к образованию сплошных швов, т.е. контактная схема переходит в объемную схему омоноличивания, а это, в свою очередь, приводит к снижению термостойкости (см. Тотурбиев Б.Д. Строительные материалы на основе силикат-натриевых композиций. - М.: Стройиздат, 1988).

1. Патент Японии №29-4640, кл. 20 B4, 1954.

2. Авторское свидетельство СССР №540843, кл. C04B 35/10, 1976.

Похожие патенты RU2530935C2

название год авторы номер документа
Состав и способ изготовления динасового жаростойкого бетона 2015
  • Тотурбиев Батырбий Джакаевич
  • Черкашин Василий Иванович
  • Тотурбиев Адильбий Батырбиевич
RU2672681C2
Состав и способ изготовления магнезитового жаростойкого бетона 2015
  • Тотурбиев Батырбий Джакаевич
  • Черкашин Василий Иванович
  • Тотурбиев Адильбий Батырбиевич
  • Мантуров Загир Абдулнасирович
  • Тотурбиева Умуй Джакаевна
RU2609267C1
Состав и способ изготовления безобжигового цирконового жаростойкого бетона 2022
  • Тотурбиев Батырбий Джакаевич
  • Мамаев Сурхай Ахмедович
RU2784296C1
СМЕСЬ ДЛЯ ЖАРОСТОЙКОГО БЕТОНА 2010
  • Тотурбиев Адильбий Батырбиевич
RU2474593C2
Состав и способ изготовления хромомагнезитового жаростойкого бетона 2016
  • Тотурбиев Батырбий Джакаевич
  • Черкашин Василий Иванович
  • Тотурбиев Адильбий Батырбиевич
RU2662820C2
Шихта для изготовления огнеупорных изделий 1982
  • Иванова Галина Михайловна
  • Бевз Владимир Афанасьевич
  • Ульрих Валентина Ивановна
SU1047875A1
Состав и способ изготовления кварцитового жаростойкого бетона 2015
  • Тотурбиев Адильбий Батырбиевич
  • Черкашин Василий Иванович
  • Тотурбиев Батырбий Джакаевич
  • Мацапулин Владимир Устинович
RU2672361C2
Состав и способ изготовления шамотного жаростойкого бетона 2015
  • Тотурбиев Адильбий Батырбиевич
  • Черкашин Василий Иванович
  • Тотурбиев Батырбий Джакаевич
RU2670806C2
Состав и способ изготовления корундового жаростойкого бетона 2016
  • Тотурбиев Батырбий Джакаевич
  • Черкашин Василий Иванович
  • Газалиев Иса Мурилович
  • Тотурбиев Адильбий Батырбиевич
  • Абдулганиева Тамила Изберовна
  • Тотурбиева Умуй Джакаевна
RU2668594C2
Состав для изготовления хромомагнезитового жаростойкого бетона 2023
  • Мамаев Сурхай Ахмедович
  • Тотурбиев Батырбий Джакаевич
RU2819583C1

Реферат патента 2014 года ОГНЕУПОРНАЯ МАССА ДЛЯ ФУТЕРОВКИ ТЕПЛОВЫХ АГРЕГАТОВ

Изобретение относится к огнеупорной промышленности. Оно может быть использовано для выполнения защитных обмазок, а также монолитных футеровок высокотемпературных тепловых агрегатов. Технический результат изобретения - повышение термостойкости и механических свойств. Огнеупорная масса для футеровки тепловых агрегатов включает электрокорунд, высокоглиноземистый цемент, цирконовый концентрат, водный раствор полисиликата натрия с силикатным модулем 6,5 при следующем соотношении компонентов, масс.%:

Электрокорунд 65-87.5 Цемент высокоглиноземистый 5-10 Цирконовый концентрат 5-20 Водный раствор полисиликата натрия 2.5-5

Формула изобретения RU 2 530 935 C2

Огнеупорная масса для футеровки тепловых агрегатов, включающая электрокорунд, высокоглиноземистый цемент, отличающаяся тем, что взамен водорастворимого соединения она содержит водный раствор полисиликата натрия с силикатным модулем 6,5, а в качестве цирконсодержащего компонента - цирконовый концентрат, при следующем соотношении компонентов, масс.%:
Электрокорунд 65-87.5 Цемент высокоглиноземистый 5-10 Цирконовый концентрат 5-20 Водный раствор полисиликата натрия 2.5-5

Документы, цитированные в отчете о поиске Патент 2014 года RU2530935C2

Огнеупорная масса для футеровки тепловых агрегатов 1975
  • Наценко Алла Ильинична
  • Турчинова Лариса Николаевна
  • Берман Шлема Мотелевич
  • Фролова Лариса Сергеевна
  • Прянишников Игорь Степанович
  • Губин Петр Васильевич
  • Тальянцев Вадим Сергеевич
  • Беляев Евгений Иванович
  • Одинцов Виктор Егорович
  • Мальчонков Морис Владимирович
SU540843A1
Огнеупорная масса для футеровки тепловых агрегатов 1979
  • Седунов Борис Устинович
  • Федулов Алексей Алексеевич
  • Гусев Эдуард Иванович
  • Сычев Юрий Викторович
SU773028A1
КЕРАМИЧЕСКАЯ СМЕСЬ ДЛЯ ПРИМЕНЕНИЯ В ПРОИЗВОДСТВЕ ОГНЕУПОРОВ И СООТВЕТСТВУЮЩИЙ ПРОДУКТ 2005
  • Хармут Харальд
RU2386604C2
US 2006005817 A1, 16.03.2006
WO 2011104670 A1, 01.09.2011

RU 2 530 935 C2

Авторы

Тотурбиев Батырбий Джакаевич

Мантуров Загир Абдулнасирович

Тотурбиев Адильбий Батырбиевич

Черкашин Василий Иванович

Даты

2014-10-20Публикация

2013-01-09Подача