Жаропрочная сталь мартенситного класса
Изобретение относится к области металлургии, в частности, к жаропрочным хромистым сталям мартенситного класса, содержащим 9-12% хрома. Предлагаемая сталь может применяться в энергетической промышленности в качестве конструкционных материалов для производства котлов, роторов и другого оборудования тепловых электростанций нового поколения, работающих при температуре до 640°C.
В настоящее время для изготовления элементов тепловых электростанций в Японии и Америке используют сталь марки P92 согласно классификации ASTM A 335 - American Society for Testing and Materials (Американское общество по материалам и методам испытаний). Сталь содержит, масс. %
Сталь Р92 обладает высоким уровнем прочности и сопротивления ползучести до температуры 620°C. В результате специальной термической обработки формируется троостомартенситная структура и выделяются частицы вторичных фаз, что объясняет повышенное сопротивление ползучести данной стали и позволяет использовать ее в качестве конструкционных материалов котлов, роторов и другого оборудования для тепловых электростанций. Дисперсионное упрочнение стали достигается за счет выделения карбидов типа M23C6 и наноразмерных карбонитридов типа (VNb)(C,N). Эта сталь сохраняет высокое сопротивление ползучести до тех пор, пока стабильна дислокационная структура мартенсита отпуска (троостомартенсита).
Недостатком стали Р92 является интенсивная коагуляция карбидов типа M23C6 и частиц фазы Лавеса при температурах выше 620°C, что способствует значительному снижению сопротивления ползучести данной стали и делает невозможным ее применение для деталей энергетических установок, работающих при суперсверхкритических параметрах пара (30 МПа, 630-650°С).
Наиболее близкой по принципу легирования и достигаемому результату к предлагаемому изобретению является жаропрочная сталь мартенситного класса, раскрытая в патенте №RU 2447184 C22C38/54. Сталь содержит, масс. %
В этой стали, по сравнению со сталью P92, увеличено содержание молибдена и бора, уменьшено содержание азота и дополнительно введены медь и титан. Благодаря повышению содержания молибдена до 0,6-0,8% происходит упрочнение твердого раствора, а также уменьшение скорости коагуляции карбидов типа M23C6, что повышает жаропрочные свойства стали. Содержание молибдена менее 0,6% не обеспечивает прочность стали при повышенных температурах, свыше 0,8% - способствует образованию дельта-феррита и фазы Лавеса. Дополнительное повышение сопротивления деформации при ползучести, а так же увеличение сопротивления коррозии под напряжением достигается за счет легирования бором в количестве 0,008-0,01%. Бор сегрегирует по границам зерен, преимущественно бывшим аустенитным, что подавляет зернограничное проскальзывание и тем самым повышает время до разрушения. При содержании бора свыше 0,01% снижается свариваемость и ковкость стали. При повышенном содержании бора (до 0,01%) целесообразно уменьшение содержания азота (0,003% и менее) с целью предотвращения образования крупных нитридов бора, которые являются причиной низкой ударной вязкости стали. Медь в количестве менее 0,01% введена для предотвращения образования дельта-феррита. Титан в количестве не более 0,01% способствует формированию и стабилизации наноразмерных карбонитридов типа MX. При содержании титана свыше 0,01% происходит образование крупных карбонитридов, что снижает сопротивление ползучести.
Недостатком данной стали является невозможность ее применения для деталей энергетических установок, работающих при температуре выше 630°С, в связи с недостаточно высокими значениями прочности и ударной вязкости, что отрицательно влияет на сопротивление ползучести стали.
Задачей предлагаемого изобретения является разработка стали, обладающей повышенным сопротивлением ползучести и работоспособной при температуре 640°C, что на 10-20°C выше, по сравнению с имеющимися аналогами.
Для решения поставленной задачи предложена жаропрочная сталь мартенситного класса, содержащая углерод, кремний, марганец, хром, никель, вольфрам, молибден, ванадий, ниобий, азот, бор, кобальт, серу, фосфор, алюминий, медь, титан и железо, причем в ней уменьшено содержание вольфрама, увеличено содержание меди, бора и марганца при следующем соотношении компонентов, масс. %: углерод 0,080-0,120; кремний не более 0,130; марганец 0,400-0,600; хром 9,000-9,500; никель от более 0,1 до 0,300; вольфрам 1,200-1,700; молибден 0,500-0,800; ванадий 0,180-0,250; ниобий 0,040-0,070; азот до менее 0,005; бор 0,010-0,014; кобальт от более 3,0 до 3,500; сера не более 0,006; фосфор не более 0,010; алюминий не более 0,010; медь не более 0,030; титан до менее 0,010; железо остальное.
В представленной стали уменьшено содержание вольфрама, увеличено содержание меди, бора и марганца, по сравнению со сталью прототипа. Благодаря повышению содержания бора происходит стабилизация карбидов типа М23С6, а также мартенситной микроструктуры за счет снижения скорости коагуляции карбидов типа М23С6, что, в свою очередь, увеличивает жаропрочность данной стали (F. Abe et al. «Suppression of Type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition). Содержание в стали Σ(W+Mo) в размере 2,0-2,4% уменьшает скорость диффузии в твердом растворе [Vaillant J. et al. «New grades for advanced coal-fired power plants-Properties and experience», Abe F. Et al. «Alloy design of creep resistant 9Cr steel using a dispersion of nanosizedcarbonitrides»] и, соответственно, подавляет переползание дислокаций, что является одним из основных способов повышения сопротивления ползучести сталей мартенситного класса с содержанием хрома 9%. Медь вносит вклад в расширение области существования аустенита, а также образует выделения, которые увеличивают прочность при повышенных температурах. Также медь играет роль дополнительных зародышей фаз, выделяемых при ползучести, благодаря чему образуется более мелкодисперсное распределение фаз, что повышает сопротивление ползучести стали. Кремний в количестве<0,15% и марганец в количестве 0,4-0,6% использованы для раскисления стали. При содержании кремния более 0,15% усиливается склонность стали к тепловой хрупкости. При введении марганца менее 0,4% - низкая раскислительная способность кремния, более 0,6% - практически не влияет на раскислительную способность, поэтому введение высокого содержания данного элемента нецелесообразно. При содержании азота менее 0,008% образования крупных нитридов бора, являющихся причиной низкой ударной вязкости, в этой стали не происходит.
Пример осуществления.
Был отлит сплав предлагаемого химического состава (табл.1). Сплав был подвергнут закалке с температуры 1060°C и отпуску при 750°C, в течение 3 часов.
Химический состав предлагаемой стали
Механические испытания на растяжение были проведены по ГОСТ 1497-84 при комнатной температуре и по ГОСТ 9651-84 при повышенных температурах (табл.2). Испытания на ударную вязкость были проведены по ГОСТ 9454-78 (табл.3). Испытания на ползучесть были проведены по ГОСТ 3248-81 (табл.4). Как видно из таблиц 2, 3, 4 механические свойства предлагаемой стали выше по сравнению с прототипом.
Механические свойства стали в зависимости от температуры испытания
В таблице 2: σ0,2 - предел текучести условный; σв - предел прочности; δ, % - относительное удлинение после разрыва.
Ударная вязкость стали при температуре 20°С
В таблице 3: КСV - ударная вязкость
Испытания на ползучесть при температуре 650°С
Как видно из таблиц, свойства предлагаемой стали позволяют применять ее для изготовления котлов, роторов и других элементов энергетических установок. Использование стали в теплоэнергетике позволит поднять рабочую температуру тепловых электростанций до 640°C.
название | год | авторы | номер документа |
---|---|---|---|
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА | 2011 |
|
RU2447184C1 |
Жаропрочная сталь мартенситного класса | 2020 |
|
RU2757923C1 |
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2014 |
|
RU2598725C2 |
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА | 2014 |
|
RU2585591C1 |
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА | 2010 |
|
RU2437956C1 |
Жаропрочная сталь мартенситного класса | 2017 |
|
RU2655496C1 |
ЖАРОПРОЧНАЯ РАДИАЦИОННО-СТОЙКАЯ СТАЛЬ | 2001 |
|
RU2218445C2 |
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА | 2013 |
|
RU2524465C1 |
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ | 2013 |
|
RU2515716C1 |
ЖАРОПРОЧНАЯ СТАЛЬ | 2011 |
|
RU2458179C1 |
Изобретение относится к области металлургии, а именно к жаропрочным хромистым сталям мартенситного класса, применяемым в энергетической промышленности в качестве конструкционных материалов для производства котлов, роторов и другого оборудования тепловых электростанций нового поколения, работающих при температуре до 640°C. Сталь содержит, мас.%: углерод 0,08-0,12, кремний не более 0,13, марганец 0,4-0,6, хром 9,0-9,5, никель от более 0,1 до 0,3, вольфрам 1,2-1,7, молибден 0,5-0,8, ванадий 0,18-0,25, ниобий 0,04-0,07, азот до менее 0,005, бор 0,01-0,014, кобальт от более 3,0 до 3,5, сера не более 0,006, фосфор не более 0,01, алюминий не более 0,01, медь не более 0,03, титан до менее 0,01, железо остальное. Сталь обладает повышенным сопротивлением ползучести при температуре до 640°C. 4 табл., 1 пр.
Жаропрочная сталь мартенситного класса, содержащая углерод, кремний, марганец, хром, никель, вольфрам, молибден, ванадий, ниобий, азот, бор, кобальт, серу, фосфор, алюминий, медь, титан и железо, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:
WO 2011154515 A1, 15.12.2011 | |||
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА | 2011 |
|
RU2447184C1 |
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ | 2001 |
|
RU2211878C2 |
СТАЛЬ ДЛЯ БЕСШОВНЫХ ТРУБЧАТЫХ ИЗДЕЛИЙ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ИСПОЛЬЗОВАНИЯ ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ | 2002 |
|
RU2293786C2 |
Преобразователь биполярного сигнала в однополярный | 1985 |
|
SU1275744A1 |
EP 16211643 A1, 01.02.2006 |
Авторы
Даты
2015-08-10—Публикация
2014-06-03—Подача