СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА Российский патент 2014 года по МПК C04B20/06 C04B28/26 C04B38/02 C04B111/40 

Описание патента на изобретение RU2532112C1

Изобретение относится к составу сырьевой смеси для производства строительных материалов, в частности пористых искусственных изделий, и может быть использовано при изготовлении гранулированного теплоизоляционного материала и особо легкого заполнителя для бетонов в промышленном и гражданском строительстве.

При изготовлении строительных изделий все более широкое распространение получает техногенное сырье в виде кремнеземсодержащих промышленных отходов горнорудных и металлургических предприятий. Одним из перспективных направлений применения микрокремнезема является получение теплоизоляционных материалов с использованием жидкостекольных композиций. Конструкционно-теплоизоляционные материалы на основе жидкого стекла представляют значительный интерес в условиях сложившегося дефицита цементного вяжущего, причем технологии их получения просты и не предполагают больших материальных вложений. Однако использование техногенного сырья не позволяет получать достаточно высокие технические характеристики теплоизоляционных материалов.

Известна сырьевая смесь для получения гранулированного теплоизоляционного материала (см. Горлов Ю.П. Технология теплоизоляционных и акустических материалов и изделий. - М.: Высшая школа, 1989. - С.179-180), содержащая следующие компоненты, мас.%: жидкое стекло плотностью 1,4-1,45 г/см3 - 93-95%, тонкодисперсный наполнитель с удельной поверхностью 0,2-0,3 м2/г (зола ТЭС) - 7-5% и гидрофобизирующую добавку - кремнийорганическую жидкость (ГКЖ-94, ГКЖ-10, ГКЖ-11) 0,5-1%). При приготовлении материала сырьевую смесь, перемешанную до однородного состояния, подают в капельном виде в раствор хлористого кальция с температурой 22-30°C и выдерживают в течение 40 минут для формирования гранул. Полученные сырцовые гранулы подсушивают при 85-90°C в течение 10-20 минут и затем вспучивают при 300-450°C в течение 1-3 минут. Полученный гранулированный материал - стеклопор имеет прочность 1-7 кгс/см2 и высокое водопоглощение.

Недостатками данной сырьевой смеси являются низкие прочность и водостойкость полученного гранулированного теплоизоляционного материала. Применение раствора хлористого кальция при формировании гранул из сырьевой смеси вызывает коррозию используемого оборудования.

Известна также сырьевая смесь для получения гранулированного теплоизоляционного материала (см. пат. 2452704 РФ, МПК C04B 12/04 (2006.01), 2012), включающая, мас.%: гидроксид натрия - 2-40, отход обогащения апатито-нефелиновой руды 0,9-10, барханный песок - 49-96, кремнеземсодержащий компонент - остальное. Отход обогащения апатито-нефелиновой руды содержит, мас.%: нефелин - до 84, полевой шпат - до 12, эгирин - до 4, гидрослюду - до 3, а также другие примеси. В качестве кремнеземсодержащего компонента используют кремнистую породу - трепел. При приготовлении материала сырьевую смесь перемешивают, подвергают распылительной сушке в противоточном потоке входящего и исходящего воздуха с температурой 380 и 115°C соответственно с получением сырцового гранулята. Последний выдерживают в течение 15 часов и вспучивают при температуре 630-650°C. Полученный гранулированный материал имел насыпную плотность 95-130 кг/м3, прочность 9-10 кгс/см2 и водопоглощение ≤5%.

Недостатками известной сырьевой смеси являются низкая прочность теплоизоляционного материала, а также ограниченное число используемых техногенных отходов.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении прочности гранулированного теплоизоляционного материала при обеспечении его пониженного водопоглощения. Кроме того, технический результат заключается в расширении сырьевой базы и улучшении экологии за счет использования большего числа техногенных компонентов.

Технический результат достигается тем, что сырьевая смесь для получения гранулированного теплоизоляционного материала, включающая кремнеземсодержащий компонент, отход обогащения апатито-нефелиновой руды и гидроксид натрия, согласно изобретению, дополнительно содержит золошлаковую смесь и двууглекислый аммоний, а в качестве кремнеземсодержащего компонента - микрокремнезем, при следующем соотношении компонентов, мас.%:

микрокремнезем 33,5-45 золошлаковая смесь 3,0-14,5 отход обогащения апатито-нефелиновой руды 25-30 гидроксид натрия (в пересчете на Na2O) 22-27 двууглекислый аммоний 0,5-1,5

На достижение технического результата направлено то, что микрокремнезем имеет состав, мас.%: SiO2 92,84-93,04, TiO2 0,47-0,98, Fe2O3 0,76-1,93, Al2O3 0,25-0,74, СаО 0,59-0,88, K2O 0,23-1,2, MnO 0,04-0,30, CuO 0,13-0,26, потери при прокаливании - остальное.

На достижение технического результата направлено также то, что золошлаковая смесь имеет состав, мас.%: SiO2 52,48-53,44, TiO2 1,08-1,23, Fe2O3 13,44-13,74, FeO 1,03-1,93, Al2O3 17,57-18,45, СаО 2,43-2,47, K2O 1,30-1,55, потери при прокаливании - остальное.

На достижение технического результата направлено также и то, что отход обогащения апатито-нефелиновой руды имеет состав, мас.%: SiO2 35,10-35,98, TiO2 4,43-4,98, (Fe2O3+FeO) 7,00-12,22, Al2O3 16,45-16,61, СаО 8,92-9,13, MgO 1,07-1,25, P2O5 4,05-4,11, Na2O 9,13-10,77, K2O 4,59-5,05.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Введение модифицирующей добавки в виде золошлаковой смеси в состав шихты для получения гранулированного теплоизоляционного материала в количестве 3-14,5 мас.% обусловлено тем, что наличие такой добавки приводит к образованию большего числа замкнутых пор с более прочными межпоровыми перегородками. Это способствует снижению водопоглощения и повышению прочности при сжатии. Содержание золошлаковой смеси менее 3 мас.% не позволяет достичь требуемой прочности материала. При содержании добавки более 14,5 мас.% увеличивается вязкость и снижается пластичность жидкостекольной композиции, что ведет к увеличению плотности и ухудшению теплопроводности гранулированного материала.

Введение в состав шихты двууглекислого аммония в количестве 0,5-1,5 мас.% обусловлено тем, что он выполняет функцию разрыхлителя и позволяет увеличить вспучиваемость гранул. Предпочтительно использовать двууглекислый аммоний марки «химически чистый». При содержании двууглекислого аммония менее 0,5 мас.% материал недостаточно вспучивается, что ведет к ухудшению теплопроводности. Содержание добавки аммония более 1,5 мас.% приводит к потере прочности гранулированного материала.

Использование в составе шихты микрокремнезема обусловлено тем, что на его основе готовят жидкостекольную композицию для получения гранулированного материала. При содержании микрокремнезема менее 33,5 мас.% получается материал с пониженной прочностью и водостойкостью. Содержание микрокремнезема более 45 мас.% ведет к избыточному увеличению плотности жидкостекольной композиции и затрудняет гранулирование материала.

Использование в составе шихты отхода обогащения апатито-нефелиновой руды обусловлено тем, что нефелинсодержащие отходы являются эффективной модифицирующей добавкой, улучшающей прочностные характеристики теплоизолирующего материала. Использование отхода обогащения апатито-нефелиновой руды в количестве менее 25 мас.% приводит к снижению прочности гранулированного теплоизоляционного материала, а использование нефелиновых отходов в количестве больше 30 мас.% ведет к уменьшению пластичности жидкостекольной композиции и вследствие этого к ухудшению вспучиваемости гранул, увеличению средней и насыпной плотности и снижению теплопроводности гранулированного материала.

Гидроксид натрия является щелочным компонентом и используется в составе шихты совместно с микрокремнеземом для приготовления жидкостекольной композиции. Он соответствует требованиям ГОСТ 2263-79 и может быть использован в виде водного раствора различной концентрации, предпочтительно 45% водного раствора. В составе шихты гидроксид натрия NaOH содержится в количестве 22-27 мас.% в пересчете на Na2O. Содержание гидроксида натрия менее 22 мас.% ведет к снижению вязкости жидко-стекольной композиции, а содержание более 27 мас.% ведет к ее излишней плотности, что негативно сказывается на формировании гранул.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышение прочности гранулированного теплоизоляционного материала при обеспечении его пониженного водопоглощения, а также в расширении сырьевой базы и улучшении экологии.

В частных случаях осуществления изобретения предпочтительны техногенные компоненты сырьевой смеси следующего состава.

Микрокремнезем является отходом кислотной переработки нефелина на ОАО «Апатит» и имеет следующий химический состав, мас.%: SiO2 92,84-93,04, TiO2 0,47-0,98, Fe2O3 0,76-1,93, Al2O3 0,25-0,74, СаО 0,59-0,88, K2O 0,23-1,2, MnO 0,04-0,30, CuO 0,13-0,26, потери при прокаливании - остальное. Микрокремнезем представляет собой тонкодисперсный порошок светлосерого цвета с удельной поверхностью 1,72-2,37 м2/г, насыпной плотностью 256-287 кг/м3 и истинной плотностью 2,0-2,17 г/см3.

Золошлаковая смесь представляет собой отход Апатитской ТЭЦ. Смесь имеет химический состав, мас.%: SiO2 52,48-53,44, TiO2 1,08-1,23, Fe2O3 13,44-13,74, FeO 1,03-1,93, Al2O3 17,57-18,45, СаО 2,43-2,47, K2O 1,30-1,55, потери при прокаливании - остальное. Средняя удельная поверхность этой смеси составляет 0,4 м2/г. Введение золошлаковой смеси в состав шихты для получения теплоизоляционного материала приводит к увеличению интенсивности рефлексов кварца и соединений типа алюмосиликатов. Это можно интерпретировать как увеличение содержания SiO2 в системе силиката натрия Na2O·nSiO2 и формирование нерастворимых алюмосиликатных новообразований. Введение указанной добавки способствует увеличению количества связей Si-O-Al-O в структуре высокомодульного жидкого стекла из микрокремнезема, а также появлению аналогичных связей вследствие замещения иона кремния ионом алюминия. Кристаллические фазы представлены в основном кристобалитом и кварцем.

Отход флотационного обогащения апатито-нефелиновых руд ОАО «Апатит» имеет следующий химический состав, мас.%: SiO2 35,10-35,98, TiO2 4,43-4,98, (Fe2O3+FeO) 7,00-12,22, Al2O3 16,45-16,61, СаО 8,92-9,13, MgO 1,07-1,25, P2O5 4,05-4,11, Na2O 9,13-10,77, K2O 4,59-5,05.

Средняя удельная поверхность отхода обогащения равна 0,19 м2/г. Отход обогащения апатито-нефелиновых руд содержит до 61,1 мас.% нефелина и по своим функциональным свойствам не уступает нефелиновому концентрату. Кроме нефелина основными компонентами отхода являются также эгирин и вторичные минералы по нефелину, содержание которых составляет соответственно, мас.%: 10,2-13,0 и 7,5-10,2. Второстепенные минералы представлены полевым шпатом и апатитом, содержание которых составляет, мас.%: 5,8-7,4 и 3,4-5,4.

Вышеуказанные частные признаки изобретения позволяют получить оптимальный состав сырьевой смеси на базе техногенных отходов при обеспечении повышенной прочности гранулированного теплоизоляционного материала и пониженного водопоглощения.

В общем случае получение сырьевой смеси согласно изобретению заключается в следующем. Сначала готовят шихту путем дозирования в заданных количествах ее компонентов: микрокремнезема, золошлаковой смеси, отхода обогащения апатито-нефелиновой руды, 45% раствора гидроксида натрия и двууглекислого аммония с добавлением воды и перемешиванием в течение 1,5-3 минут до образования однородной суспензии. Далее осуществляют гидротермальную обработку при температуре 90-95°C и атмосферном давлении в течение 20-25 минут. Полученную жидкостекольную композицию подвергают грануляции в тарельчатом грануляторе. Сформированные сырцовые гранулы после сушки при комнатной температуре в течение 6-8 часов опудривают микрокремнеземом и обрабатывают при температуре 300-450°C в течение 20-30 минут с вспучиванием гранул. Затем гранулы подвергают кратковременному обжигу при 800-900°C в течение 1-3 минут. В итоге получают гранулированный теплоизоляционный материал с крупностью гранул 4-16 мм.

Сущность и преимущества заявленной сырьевой смеси для получения гранулированного теплоизоляционного материала могут быть проиллюстрированы Примерами 1-6 конкретного выполнения. Составы сырьевой смеси для получения гранулированного теплоизоляционного материала согласно Примерам 1-6 и основные характеристики полученного теплоизоляционного материала приведены в Таблице.

Из данных Таблицы видно, что предлагаемая сырьевая смесь для получения гранулированного теплоизоляционного материала по сравнению с прототипом позволяет получить материал с более высокой (в 2,2-3,3 раза) прочностью и сопоставимым водопоглощением (≤5%). Использование в качестве компонентов сырьевой смеси большего числа техногенных отходов позволяет расширить сырьевую базу и улучшить экологию. Гранулированный теплоизоляционный материал из предлагаемой сырьевой смеси может быть получен промышленным способом на базе стандартного строительного оборудования.

Таблица Пример № Компоненты сырьевой смеси Технические характеристики материала микро-кремнезем золошла-ковая смесь отход обогащения апатито-нефелино-вой руды гидроксид натрия двуугле-кислый аммоний насыпная плотность, кг/м3 прочность, кгс/см2 водопоглощение, % фракции гранул, мм 8-16 4-8 8-16 4-8 8-16 4-8 1 45,0 3,0 27 24 1 105 112 22 24 5 4,5 2 40,5 7,5 27 24 1 105 113 26 28 5 4 3 36,7 11,3 27 24 1 106 117 27 30 4 3,5 4 33,5 14,5 27 24 1 110 123 28 30 4 3,5 5 40,0 7,5 25 27 0,5 109 117 25 27 5 5 6 35,2 11,3 30 22 1,5 111 124 27 28 4,5 4

Похожие патенты RU2532112C1

название год авторы номер документа
Способ получения пеносиликатного материала 2022
  • Манакова Надежда Кимовна
  • Суворова Ольга Васильевна
RU2787671C1
Способ получения пеносиликатного материала 2019
  • Манакова Надежда Кимовна
  • Суворова Ольга Васильевна
RU2703032C1
Способ получения пеносиликатного материала 2023
  • Манакова Надежда Кимовна
  • Суворова Ольга Васильевна
RU2817369C1
СОСТАВ ШИХТЫ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННЫХ БЛОКОВ ИЗ ОТХОДОВ ПЕРЕРАБОТКИ АПАТИТО-НЕФЕЛИНОВЫХ РУД 2022
  • Васкалов Владимир Федорович
  • Нежиков Андрей Викторович
  • Малявский Николай Иванович
  • Ведяков Михаил Иванович
RU2799217C1
Композиция на основе техногенных отходов для получения геополимерного материала 2023
  • Лазоренко Георгий Иванович
  • Каспржицкий Антон Сергеевич
  • Кругликов Александр Александрович
  • Мищиненко Василий Борисович
  • Яценко Елена Альфредовна
RU2817480C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО СТРОИТЕЛЬНОГО МАТЕРИАЛА ИЗ ОТХОДОВ ПЕРЕРАБОТКИ АПАТИТО-НЕФЕЛИНОВЫХ РУД 2021
  • Васкалов Владимир Федорович
  • Нежиков Андрей Викторович
  • Малявский Николай Иванович
  • Ведяков Михаил Иванович
RU2781680C1
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 2004
  • Кудяков А.И.
  • Радина Т.Н.
  • Иванов М.Ю.
RU2257358C1
Керамическая масса для получения клинкерного кирпича 2021
  • Макаров Дмитрий Викторович
  • Суворова Ольга Васильевна
  • Маслобоев Владимир Алексеевич
  • Селиванова Екатерина Андреевна
  • Плетнева Вера Евгеньевна
RU2754747C1
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 2004
  • Кудяков Александр Иванович
  • Радина Татьяна Николаевна
  • Иванов Михаил Юрьевич
RU2267468C1
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПРОИЗВОДСТВА ЗЕРНИСТОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 1999
  • Глебов М.П.
  • Белых С.А.
  • Патраманская С.В.
RU2163898C2

Реферат патента 2014 года СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА

Изобретение относится к составу сырьевой смеси для производства строительных материалов, в частности пористых искусственных изделий, и может быть использовано при изготовлении гранулированного теплоизоляционного материала и особо легкого заполнителя для бетонов. Сырьевая смесь для получения гранулированного теплоизоляционного материала содержит, мас.%: микрокремнезем 33,5-45, золошлаковую смесь 3,0-14,5, отход обогащения апатито-нефелиновой руды 25-30, гидроксид натрия (в пересчете на Na2O) 22-27, двууглекислый аммоний 0,5-1,5. Изобретение развито в зависимых пунктах. Технический результат - повышение прочности гранулированного теплоизоляционного материала при снижении его водопоглощения, утилизация техногенных отходов. 3 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 532 112 C1

1. Сырьевая смесь для получения гранулированного теплоизоляционного материала, включающая кремнеземсодержащий компонент, отход обогащения апатито-нефелиновой руды и гидроксид натрия, отличающаяся тем, что она дополнительно содержит золошлаковую смесь и двууглекислый аммоний, а в качестве кремнеземсодержащего компонента - микрокремнезем, при следующем соотношении компонентов, мас.%:
микрокремнезем 33,5-45 золошлаковая смесь 3,0-14,5 отход обогащения апатито-нефелиновой руды 25-30 гидроксид натрия (в пересчете на Na2O) 22-27 двууглекислый аммоний 0,5-1,5

2. Сырьевая смесь по п.1, отличающаяся тем, что микрокремнезем имеет состав, мас.%: SiO2 92,84-93,04, TiO2 0,47-0,98, Fe2O3 0,76-1,93, Al2O3 0,25-0,74, СаО 0,59-0,88, K2O 0,23-1,2, MnO 0,04-0,30, CuO 0,13-0,26, потери при прокаливании - остальное.

3. Сырьевая смесь по п.1, отличающаяся тем, что золошлаковая смесь имеет состав, мас.%: SiO2 52,48-53,44, TiO2 1,08-1,23, Fe2O3 13,44-13,74, FeO 1,03-1,93, Al2O3 17,57-18,45, СаО 2,43-2,47, K2O 1,30-1,55, потери при прокаливании - остальное.

4. Сырьевая смесь по п.1, отличающаяся тем, что отход обогащения апатито-нефелиновой руды имеет состав, мас.%: SiO2 35,10-35,98, TiO2 4,43-4,98, (Fe2O3+FeO) 7,00-12,22, Al2O3 16,45-16,61, СаО 8,92-9,13, MgO 1,07-1,25, P2O5 4,05-4,11, Na2O 9,13-10,77, K2O 4,59-5,05.

Документы, цитированные в отчете о поиске Патент 2014 года RU2532112C1

СПОСОБ ПОЛУЧЕНИЯ ПОЛУФАБРИКАТА ДЛЯ ИЗГОТОВЛЕНИЯ СТРОИТЕЛЬНОГО МАТЕРИАЛА 2010
  • Писарев Борис Васильевич
  • Меркин Николай Александрович
  • Магомедов Магомедрасул Газидибирович
RU2452704C2
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ ЗЕРНИСТОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 2003
  • Радина Т.Н.
  • Кудяков А.И.
  • Иванов М.Ю.
RU2246463C1
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ВОДОСТОЙКОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2011
  • Абдрахимов Владимир Закирович
RU2478084C2
МАССА ДЛЯ ИЗГОТОВЛЕНИЯ ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2012
  • Щепочкина Юлия Алексеевна
RU2486147C1
Сырьевая смесь для изготовления теплозвукоизоляционного материала 1977
  • Трутнев Виктор Алексеевич
  • Назаров Игорь Александрович
  • Жирнов Леонид Евсеевич
  • Войтович Владимир Антонович
  • Домазов Сергей Яковлевич
  • Левин Александр Борисович
SU622783A1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕНТОНИТА 0
SU202082A1
JP 52087416 A, 21.07.1977

RU 2 532 112 C1

Авторы

Манакова Надежда Кимовна

Суворова Ольга Васильевна

Даты

2014-10-27Публикация

2013-07-30Подача