СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СЛОЕВ УГЛЕРОДА СО СВОЙСТВАМИ АЛМАЗА Российский патент 2014 года по МПК C23C14/16 C30B23/02 B82Y30/00 

Описание патента на изобретение RU2532749C9

Изобретение относится к технике нанесения покрытий путем проведения неравновесных процессов распыления в вакууме ионным пучком и может быть использовано для создания автоэмиссионных катодов, упрочнения рабочих кромок режущего инструмента, в частности хирургического, защиты от химически агрессивных сред и повышенных температур, требующих химической инертности и биосовместимости покрытий, высокой твердости и низкого трения, высокого электросопротивления и теплопроводности покрытий.

Известен способ нанесения аморфного углеводородного покрытия (патент RU 2382116, С23С 14/16, 2008), обладающего высокой твердостью, химической инертностью, низким трением, высоким электросопротивлением и теплопроводностью, с использованием плазменного катода, содержащего полый катод, поджигающий электрод и анодную сетку. Формирование покрытия осуществляется зажиганием несамостоятельного импульсно-периодического электрического разряда при подаче импульсно-периодического напряжения между стенками плазменной камеры и анодом в смеси химически инертного газа аргона Ar и углеводородсодержащего газа C2H2 ацетилена.

Общим недостатком способа осаждения аморфных алмазоподобных углеводородных покрытий является необходимость активируемого плазмой электрического разряда разложения газообразных токсичных соединений углеводородсодержащего газа C2H2. Кроме того, недостатком является сложность многоступенчатой газоразрядной структуры, использование импульсных источников питания и, как следствие, низкая энергоэффективность и надежность, сложность управления процессом нанесения покрытия и сложность технического решения в совокупности.

Известен способ получения алмазоподобных слоев (патент RU 1610949, C30C 23/02, 1988), который включает распыление мишени из графита импульсным TEA CO2-лазером с плотностью мощности излучения ~ 108 Вт/см2. Энергия в импульсе 1,3 Дж. Пары осаждают на подложку, расположенную от мишени на расстоянии не менее 10-3 Па. Недостаток данного способа состоит в низком качестве покрытий (покрытия рыхлые, сильно дефектные), недостаточной производительности и невозможности нанесения однородных покрытий на большие площади, трудности воспроизведения режимов осаждения и крайне низком коэффициенте использования испаряемого материала (графита).

Известны способы получения покрытий - с алмазоподобной структурой (патент RU 2105379, C23C 16/26, 1994), защитных покрытий (патент RU 2048607, C23C 16/26, 1989), наноструктурированных алмазных покрытий (патент RU 2456387, C23C 16/513, 2010), алмазного покрытия из паровой фазы (патент RU 2032765, C23C 14/00, 1988), слоев алмазоподобного углерода (патент RU 2205894, C23C 16/26, 1998). В известных способах нанесения покрытий на подложку используется плазма СВЧ-разряда либо в режиме электронного циклотронного резонанса в атмосфере рабочего газа или смеси газов, либо химическим осаждением из газовой фазы в СВЧ-плазме, либо из тепловой плазмы на постоянном токе с радикализацией газообразного углеродного соединения в плазменной струе и воздействием радикализованной плазменной струи на обрабатываемую подложку с образованием алмазного покрытия. При этом используется метан CH4 или другой летучий углеводород в смеси с водородом или парами воды, различные смеси на основе монооксида углерода CO, в том числе с добавками инертных газов. На подложку подают постоянный отрицательный электрический потенциал, за счет которого она равномерно бомбардируется ионами из СВЧ-плазмы и наблюдается рост равномерной по толщине и структуре пленки. В случае осаждения из газовой фазы в вакуумно-плотную камеру, снабженную системой регулировки подачи газа-генератора углерода (CH4, CO, C2H2, C2H4) и водорода H2, помещается изделие из вольфрама, в газовую форсунку СВЧ-плазмотрона подается смесь газов CH4:H2=20:1 и зажигается СВЧ-разряд так, чтобы образующаяся плазма вблизи поверхности изделия имела температуру 3000-5000 К. После поджига плазмы и установления необходимых параметров, процесс продолжают в течение 12 ч.

Недостатками известных способов является сложность управления и регулирования пространственным распределением магнитных полей, необходимость применения и трудность подготовки и поддержания необходимого состава газовой смеси, технические сложности, связанные с созданием магнитных полей объемными соленоидами, применение сложных конструкций генераторов СВЧ-энергии и ее подвода и необходимость зажигания СВЧ-разряда на частоте резонансного поглощения углеводородов. Кроме того, высокие температуры ограничивают и сужают номенклатуру обрабатываемых поверхностей.

Известен способ нанесения твердого углеродного покрытия на лезвие и бритвенный блок (патент RU 2238185, С23С 14/06, 1995), в котором графитовая мишень распыляется катодным пятном вакуумного дугового разряда, благодаря чему образуется интенсивный поток плазмы ионов углерода, который осаждается на лезвие, имеющее отрицательный потенциал. В результате образуется покрытие из аморфного алмаза толщиной 0,1 мкм.

Существенным недостатком является нестабильность катодного пятна, низкая энергоэффективность, невысокая эффективность испарения углерода и, как следствие, недостаточное воспроизведение свойств покрытия.

Известен способ выращивания алмазоподобных покрытий распылением ионным пучком в варианте с дополнительным ионным источником Финкельштейна со стеклянной вакуумной камерой (Семенов А.П. Пучки распыляющих ионов: получение и применение. Улан-Удэ: Изд-во БНЦ СО РАН, 1999. 207 с.). Графитовая мишень распылялась пучком ионов Ar+ плотностью тока 0,5-1 мА/см2, энергией до 10 кэВ при давлении 7·10-5 Па. Растущие слои осветлялись вспомогательным пучком ионов Ar+ или Ar+ и CH4+ энергией <2 кэВ и током 0,2-0,5 мА. Скорость наращивания слоев на расстоянии 15 см от мишени с учетом условия N1/N2<1, где N1 и N2 число атомов углерода, соответственно покидающих и падающих на ростовую поверхность, составляла 8,3·10-3-1,7·10-2 нм/с. Более значительные скорости роста получены в парах бензола при сравнительно высоком давлении.

Недостатком способа является сложность процессов распыления и осветления, состоящих в необходимости использования дополнительного ионного пучка. В этих условиях трудно обеспечить оптимизацию технологических параметров и реализовать пересыщение атомов углерода как необходимого условия синтеза алмаза, поскольку энергия ионов, падающих на растущий слой, должна быть достаточно низкой, чтобы не допустить каскада атомных смещений, затрудняющих образование устойчивых sp3 связанных областей и приводящих к появлению энергетически более выгодной структуры sp2 связанных атомов углерода.

Наиболее близким техническим решением является способ нанесения покрытия (патент RU 2052540, С23С 14/46, 1992), по которому, для упрочнения режущего инструмента, увеличения износостойкости трущихся деталей, защиты от агрессивных сред, повышенных температур, на поверхность изделия в вакууме наносят покрытие распылением мишени ионным пучком инертного или химически активного вещества, или комбинацией этих веществ. Кроме того, производят предварительную обработку этим же ионным пучком поверхности изделия, притом во время нанесения покрытия на поверхность изделия часть ионного пучка (до 10 процентов тока пучка) направляют непосредственно на обрабатываемую поверхность изделия, обеспечивая непрерывную его очистку.

К характерным недостаткам способа нанесения покрытия, принятого в качестве прототипа изобретения, относится невысокая эффективность процесса осаждения из-за перераспыления осаждаемых паров при наклонном падении ионного пучка (угол падения 45-60°), при котором коэффициент распыления оказывается сравнительно высоким. Кроме того, в этих условиях практически невозможно реализовать пересыщение атомов углерода как необходимого условия синтеза алмаза и обеспечить оптимизацию технологических параметров ввиду высокой энергии атомов отдачи выбиваемых при наклонном падении ионов под углом 45-60°, преодолевающих поверхностный потенциальный барьер. По сути, наблюдается распыление поверхности.

Изобретение позволяет устранить указанные недостатки прототипа, повысить эффективность процесса благодаря касательному (скользящему) падению ионного пучка на плоскую ростовую поверхность. В этом случае атомы отдачи имеют достаточную энергию для пересыщения и недостаточную, чтобы преодолеть потенциальный барьер и выйти в вакуум. В процессе распыления одним широким ионным пучком при наклонном падении ионов на графитовую мишень и скользящем падении ионов на ростовую поверхность достигаются необходимые условия выращивания тонких слоев алмаза. При этом процесс проводится при больших пересыщениях, обеспечивающих высокую вероятность образования алмазных зародышей, и в условиях предотвращения образования как графитовой структуры, так и перехода образовавшейся алмазной фазы в графит. Условия нанесения пленок таковы, что основным фактором является рассеяние падающих ионов растущей пленкой, благодаря которому атомами отдачи на ростовой поверхности пленки могут создаваться сжимающие напряжения ~10 ГПа, достаточные для образования алмазной фазы. В таком процессе участвуют два потока атомов: с одной стороны, поток выбитых атомов углерода, падающих на подложку, где в результате их наращивания происходит движение ростовой поверхности с некоторой скоростью, определяемой плотностью потока, с другой, поток атомов углерода отдачи, возникающих от рассеяния ионов в глубине растущей пленки и движущихся к ее поверхности, создавая некоторую предельную концентрацию междоузельных атомов, определяющих величину напряжений в растущем слое, соответствующую области стабильности алмазной фазы. Указанный характер распыления и облучения качественно и существенно отличен от такового в прототипе.

Процесс распыления ионным пучком осуществлялся по схеме фиг.1. Ускоренным пучком ионов 1 выбивались атомы углерода 2 из графитовой мишени 3. Распыленные атомы 2 конденсировались на подложке 4. Температура подложек задавалась подводом мощности 5 от специального нагревателя. Подложка 4 устанавливалась вдоль направления падения пучка ионов, притом часть ионов пучка при скользящем падении облучала непрерывно наращиваемый углеродный слой. Фазовый состав и морфология поверхности полученных наноразмерных углеродных покрытий исследовались с помощью дифракции рентгеновских лучей (дифрактометр Rigaku с Cukα-излучением), инфракрасной спектроскопии (спектрометр UR-20, интервал волновых чисел 700-4000 см-1), комбинационного рассеяния света (использовалась линия 488 нм аргонового лазера, спектрометр Т6400ТА of Dilor-Jobin Yvon-spex и спектрометр ДФС-24, для возбуждения использовали линию гелий-неонового лазера, λ=632,8 нм) и атомно-силовой микроскопии (Digital Instruments, Nanoscope 3, contact mode, Si3N4 type). Исследованы автоэмиссионные свойства полученных тонких пленок углерода.

Возможность осуществления изобретения с использованием признаков способа, включенных в формулу изобретения, подтверждается примером его практической реализации.

Пример. Процесс выращивания наноразмерных слоев углерода со свойствами алмаза осуществлялся распылением мишени 3 из графита марки 99,99 пучком ионов 1 смеси аргона и водорода. Распыленные атомы углерода осаждали на кремниевые подложки 4 при давлении 6,6·10-3 Па и температуре ростовой поверхности ≤ 673 К. Ток ионного пучка 5-10 мА, энергия ионов 4 кэВ. Часть распыляющих ионов пучка наклонно под углом ~ 45° падает на графитовую мишень 3 и часть ионов касательным образом под углом 85-90° контактирует с ростовой поверхностью подложки 4.

Проведенные рентгенофазовые исследования характеризуют выращенные покрытия как рентгеноаморфные. В спектре комбинационного рассеяния присутствуют полосы поглощения при 1330 см-1 и 1600 см-1, характерные для связей в алмазе (фиг.2). Результаты исследования поверхности аморфных углеродных слоев толщиной 50 нм (фиг.3 и 4), свидетельствуют о том, что в низкотемпературной области наблюдается глобулярная стадия роста с поверхностным размером частиц 50 нм и высотой 5 нм. Средняя высота неровностей поверхности составляет 6,425 нм.

Электронные эмиссионные свойства полученных слоев исследовались методом измерения зависимости эмиссионного тока от напряженности приложенного электрического поля. Измерение эмиссионного тока выполнялось в вакууме ~ 1,3·10-4 Па при подаче импульсного напряжения частотой 50 Гц и длительностью импульса 30 мкс. Толщина покрытия ~ 50 нм, эмитирующая поверхность ~ 0,25 см2. Электрическое поле до ~ 5,6 кВ прикладывалось между кремниевой плоской подложкой и плоским анодным электродом. Протяженность межэлектродного вакуумного промежутка эмитирующая поверхность покрытия - анодный электрод составляет ~160 мкм. Для наноразмерных углеродных слоев, выращенных пучками заряженных частиц, обнаружена высокая эффективность автоэлектронной эмиссии, наблюдаемой при напряженности электрического поля с пороговым значением около 3·105 В/см, плотностью эмиссионного тока 1,2·10-5 А/см2, фиг.5. Из экспериментальной эмиссионной характеристики определена работа выхода электронов ~ 0,332 эВ.

Предложенный способ выращивания наноразмерных углеродных покрытий со свойствами алмаза характеризуется неограниченной возможностью получения слоев алмазоподобной структуры при низких температурах и давлениях, причем распылением ионным пучком достигнуты приемлемые для ряда технологических применений условия роста. Особенно выделяется управляемый синтез углеродных покрытий структуры алмаза в широкой области свойств, посредством управления параметрами и характеристиками ионного распыления, задающими высокое содержание углеродных фаз с sp3 валентной гибридизацией электронов.

Похожие патенты RU2532749C9

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ АЛМАЗОПОДОБНОГО УГЛЕРОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Семенов Александр Петрович
  • Семенова Ирина Александровна
RU2567770C2
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ КАРБИНА 2013
  • Семенов Александр Петрович
  • Семенова Ирина Александровна
  • Смирнягина Наталья Назаровна
RU2542207C2
Способ получения тонких алмазных пленок 2017
  • Плотников Владимир Александрович
  • Макаров Сергей Викторович
  • Макрушина Анна Николаевна
  • Зырянова Анастасия Игоревна
  • Шуткин Алексей Александрович
RU2685665C1
Способ получения многослойных износостойких алмазоподобных покрытий 2020
  • Колесников Владимир Иванович
  • Сычев Александр Павлович
  • Колесников Игорь Владимирович
  • Сычев Алексей Александрович
  • Мотренко Петр Данилович
  • Ковалев Петр Павлович
  • Воропаев Александр Иванович
RU2740591C1
ЯЩИК С ПОКРЫТИЕМ ДЛЯ МОЮЩЕГО СРЕДСТВА 2008
  • Крише Бернд
RU2487204C2
СПОСОБ ПОЛУЧЕНИЯ КОНФОРМНОГО АЛМАЗОПОДОБНОГО УГЛЕРОДНОГО ПОКРЫТИЯ 1996
RU2099282C1
Способ получения алмазоподобных тонких пленок 2016
  • Плотников Владимир Александрович
  • Демьянов Борис Федорович
  • Макаров Сергей Викторович
  • Ярцев Владимир Иванович
RU2668246C2
Способ получения защитного покрытия на поверхности стеклянных изделий 1981
  • Олевский Сергей Самуилович
  • Сергеев Михаил Самуилович
  • Толстихина Алла Леонидовна
  • Кац Самуил Михайлович
  • Грибов Борис Георгиевич
SU1006402A1
СПОСОБ УМЕНЬШЕНИЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Баранов А.М.
RU2141005C1
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКИХ СВЕРХТВЕРДЫХ ПОКРЫТИЙ 2007
  • Беляев Виталий Степанович
  • Давлетшин Андрей Эрнстович
  • Плотников Сергей Александрович
  • Трахтенберг Илья Шмулевич
  • Владимиров Александр Борисович
RU2360032C1

Иллюстрации к изобретению RU 2 532 749 C9

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СЛОЕВ УГЛЕРОДА СО СВОЙСТВАМИ АЛМАЗА

Изобретение относится к нанесению покрытий путем проведения неравновесных процессов распыления в вакууме ионным пучком. Может использоваться для создания автоэмиссионных катодов, упрочнения рабочих кромок режущего инструмента, в частности хирургического, защиты от химически агрессивных сред и повышенных температур, требующих химической инертности и биосовместимости покрытий, высокой твердости и низкого трения, высокой теплопроводности покрытий. Графитовую мишень распыляют пучком ионов и конденсируют пары углерода на подложке. Рассеяние части ионов наращиваемым слоем ведут при касательном падении ионов на поверхность подложки. Атомами отдачи на ростовой поверхности слоя создаются сжимающие напряжения 10 ГПа, достаточные для образования алмазной фазы. Обеспечивается повышение эффективности процесса благодаря оптимизации технологических параметров достижения пересыщения атомов углерода и получение наноразмерных слоев, обладающих высокой твердостью, химической инертностью, низким трением, высокой теплопроводностью, низкой работой выхода. 1 з.п. ф-лы, 5 ил., 1 пр.

Формула изобретения RU 2 532 749 C9

1. Способ получения наноразмерных слоев углерода со свойствами алмаза, включающий распыление в вакууме ионным пучком графитовой мишени, конденсацию паров углерода на подложке и рассеяние части ионов наращиваемым слоем, контактирующим с ионным пучком, отличающийся тем, что рассеяние падающих ионов наращиваемым слоем ведут при касательном падении ионов на контактирующую с пучком плоскость подложки, при этом на ростовой поверхности атомами отдачи наращиваемого слоя создают сжимающие напряжения 10 ГПа, достаточные для образования алмазной фазы.

2. Способ по п.1, отличающийся тем, что при больших пересыщениях, обеспечивающих высокую вероятность образования алмазных зародышей, рассеяние ведут с углами падения ионов на подложку 85-90°.

Документы, цитированные в отчете о поиске Патент 2014 года RU2532749C9

RU 2052540 C1, 20.01.1996
СПОСОБ ФОРМИРОВАНИЯ СВЕРХТВЕРДОГО АМОРФНОГО УГЛЕРОДНОГО ПОКРЫТИЯ В ВАКУУМЕ 2003
  • Колпаков А.Я.
  • Инкин В.Н.
  • Уханов С.И.
RU2240376C1
US 20020127404 A1, 12.09.2002
EP 1036208 B1, 19.01.2005
US 6086796 A1, 11.07.2000

RU 2 532 749 C9

Авторы

Семенов Александр Петрович

Семенова Ирина Александровна

Даты

2014-11-10Публикация

2013-07-01Подача