СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОГО СПЛАВА НА ОСНОВЕ МОДИФИЦИРОВАННОГО КАРБИДА ВОЛЬФРАМА Российский патент 2014 года по МПК C22C29/08 C22C1/05 B22F3/10 

Описание патента на изобретение RU2533225C2

Изобретение относится к области порошковой металлургии и предназначено для получения изделий из сверхтвердых материалов на основе карбида вольфрама. Режущий инструмент, изготовленный из этого материала, может найти применение в машиностроении, в частности в металлообрабатывающей промышленности для черновой обработки закаленных сталей, для точения с ударом, «прерывистого точения» закаленных сталей, буровых систем и т.д.

Известен патент №2351676 «Спеченный твердый сплав на основе карбида вольфрама», используемый для изготовления режущего инструмента. Твердый сплав содержит карбид вольфрама и связку, состоящую из молибдена, ниобия, рения и кобальта.

Недостатком данного изобретения является использование чистого карбида вольфрама и содержание редкоземельных металлов в связке, что повышает его стоимость, а также недостаточный предел прочности при изгибе, что ограничивает его применение при высокоскоростных режимах обработки и в ответственных узлах механизмов.

Наиболее близким к заявляемому способу является «Способ получения спеченного твердого сплава», патент РФ №2048569, в котором производят смешивание порошка карбида вольфрама с порошками карбида тантала и кобальта в необходимых соотношениях. Смешивание производят совместным мокрым размолом (например, в среде спирта) в барабанной мельнице или атритторе с размольными шарами. Совместный размол ведут до получения удельной поверхности смеси 2,6-3,8 м2/г. Смесью заполняют формы и спекают в водородной среде или в вакууме.

Недостатком данного способа является многокомпонентный связующий материал, сложный процесс приготовления шихты, процесс спекания в водородной среде.

Задачей изобретения является способ изготовления сплава, использующего гранулы сплава ВК8 и порошка модифицированного карбида вольфрама с низкой себестоимостью его производства.

Техническим результатом от применения способа получения наноструктурированного сверхпластичного сплава является увеличение его технических характеристик, а именно: твердости, прочности на изгиб и сжатие, а также повышение износо- и радиационной устойчивости.

Указанная задача решается за счет того, что предлагаемый способ получения наноструктурированного сверхпластичного сплава, также как известный, содержит порошки, содержащие карбид вольфрама.

Однако в отличие от известного в предлагаемом способе получения наноструктурированного сверхпластичного сплава в шихте в качестве матрицы используют гранулы сплава ВК8 размера 1-5 мкм, составляющие (90±1) мас.%, и монокристаллический нанопорошок карбида вольфрама с размером частиц в диапазоне 10-200 нм с мультифрактальной (логнормальной) функцией распределения частиц нанопорошка по размерам в количестве (10±1) мас.%, при этом полученная шихта, после перемешивания, подвергается одностадийному и низкотемпературному процессу спекания, состоящему в двухступенчатом нагреве формы готового изделия в вакууме до (600-700)°С в течение 3 часов с экспозицией в течение 1 часа и дальнейшим нагревом в течение 1 часа до температуры спекания (1250-1300)°С с экспозицией при этой температуре в течение 10 минут и последующим охлаждением формы готового изделия до нормальной температуры.

Исходные гранулы сплава ВК8, которые могут быть получены, размолом до 1-5 мкм и составляющие основную массу (матрицу) шихты смешивают с монокристаллическим нанопорошком карбида вольфрама с размером частиц от 10 до 200 нм. Особенностью данного способа является то, что частицы нанопорошка карбида вольфрама должны подчиняться мультифрактальной (логнормальной) функции распределения частиц по размерам, получаемых в результате центрифугирования с шагом 20 нм с последующей сборкой функции распределения из отдельных фракций. В результате образуется наноструктурированный материал, не имеющий пустот и обладающий мелкозернистой структурой. Далее шихту помещают в форму и подвергают медленному нагреву в вакууме до (600-700)°С в течение 3-х часов и выдержкой при этой температуре в течение 1 часа. При этом происходит бурный рост кристаллитов нанофазы и формирование плотноупакованной структуры материала. Затем производят нагрев в течение 1 часа до температуры спекания (1250-1300)°С с последующей выдержкой в течение 10 минут. При этой операции из микрокристаллитов матрицы выплавляется Со, заполняя нанопоры и формируя правильные градиенты атомов примеси (т.е. Со) вдоль системы границ, обеспечивающих устойчивость этой системы границ за счет образования кобальтовой связки. После выдержки форму охлаждают до нормальной температуры.

Получаемый сплав обладает техническими характеристиками, существенно более высокими, чем многие сплавы этой категории, в частности твердость HRA не менее 92,2, прочность на изгиб не менее 2910 мПа и на сжатие не менее 4200 мПа, а также повышенной в 7-10 раз по сравнению с ВК-8 износоустойчивостью и радиационной устойчивостью в 2-3 раза по сравнению с чистым карбидом вольфрама. Полученные характеристики достигаются благодаря формированию устойчивой системы внутренних границ и связанным с этим эффектом сверхпластичности - обратимой микроподвижности гранул матрицы сплава ВК8 относительно друг друга, а также за счет интенсивных процессов переноса образующихся при нагрузке дислокации, вдоль системы границ из внутренней части к внешней поверхности сплава.

Преимуществом предлагаемого способа является его низкая себестоимость как за счет компонентов, входящих в сплав, так и за счет использования существующих на производствах печей, способных осуществлять используемый одностадийный низкотемпературный режим спекания.

Похожие патенты RU2533225C2

название год авторы номер документа
Способ спекания изделий из порошков твердых сплавов группы WC-Co 2016
  • Новиков Сергей Васильевич
  • Перетягин Павел Юрьевич
  • Кузнецова Екатерина Викторовна
  • Пристинский Юрий Олегович
  • Фокин Павел Валерьевич
RU2636538C1
СПОСОБ СПЕКАНИЯ ИЗДЕЛИЙ ИЗ ПОРОШКОВ ТВЕРДЫХ СПЛАВОВ ГРУППЫ WC-Co 2014
  • Григорьев Сергей Николаевич
  • Торресильяс Сан Милан Рамон
  • Солис Пинарготе Нестор Вашингтон
  • Новиков Сергей Васильевич
  • Пожидаев Сергей Сергеевич
  • Перетягин Павел Юрьевич
RU2582851C1
СПОСОБ СИНТЕЗА НАНОЧАСТИЦ МЕТАЛЛОВ ОСАЖДЕНИЕМ НА ПОРИСТЫЙ УГЛЕРОДНЫЙ МАТЕРИАЛ 2018
  • Кизнер Всеволод Германович
  • Стрельцов Михаил Викторович
  • Новопашин Сергей Андреевич
RU2685564C1
СПЕЧЁННЫЙ ТВЁРДЫЙ СПЛАВ НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2018
  • Семёнов Олег Вячеславович
  • Фёдоров Дмитрий Викторович
  • Румянцев Владимир Игоревич
RU2693415C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО СОСТАВА ТВЕРДОГО СПЛАВА 2007
  • Калмыков Владимир Ильич
  • Борисенко Николай Иванович
  • Башков Валерий Михайлович
  • Петровская Татьяна Михайловна
  • Кобицкой Иван Васильевич
RU2365465C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ ТВЕРДОГО СПЛАВА НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА 2016
  • Бешенков Павел Сергеевич
  • Куфтырев Роман Юрьевич
RU2631548C1
СПОСОБ ИЗГОТОВЛЕНИЯ АЛМАЗНОГО ИНСТРУМЕНТА С НАНОМОДИФИЦИРОВАННОЙ РЕЖУЩЕЙ ЧАСТЬЮ 2018
  • Андреев Владимир Алексеевич
  • Гуреев Анатолий Иванович
  • Севастьянов Петр Игоревич
RU2685917C1
СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ ТВЕРДОГО СПЛАВА 2013
  • Калмыков Владимир Ильич
  • Молодык Сергей Ульрихович
  • Петровская Татьяна Михайловна
  • Борисенко Николай Иванович
  • Шахаева Марина Геннадьевна
  • Захарова Татьяна Юрьевна
RU2542197C2
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ СПЕЧЁННОГО ТВЁРДОГО СПЛАВА НА ОСНОВЕ КАРБИДА ВОЛЬФРАМА 2018
  • Семёнов Олег Вячеславович
  • Фёдоров Дмитрий Викторович
  • Румянцев Владимир Игоревич
RU2675875C1
ШИХТА ЭЛЕКТРОДНОГО МАТЕРИАЛА ДЛЯ ЭЛЕКТРОИСКРОВОГО ЛЕГИРОВАНИЯ ДЕТАЛЕЙ МАШИН 2012
  • Агеев Евгений Викторович
  • Гадалов Владимир Николаевич
  • Романенко Дмитрий Николаевич
  • Агеева Екатерина Владимировна
RU2515409C2

Реферат патента 2014 года СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОГО СПЛАВА НА ОСНОВЕ МОДИФИЦИРОВАННОГО КАРБИДА ВОЛЬФРАМА

Изобретение относится к порошковой металлургии и предназначено для получения изделий из сверхтвердых материалов на основе карбида вольфрама. Может использоваться в машиностроении и металлообрабатывающей промышленности. В шихте в качестве матрицы используются гранулы сплава ВК8 размером 1-5 мкм, составляющие (90±1) мас.%, и монокристаллический нанопорошок карбида вольфрама с размером частиц в диапазоне 10-200 нм с логнормальной функцией распределения частиц нанопорошка по размерам в количестве (10±1) мас.%. После перемешивания шихта подвергается процессу спекания в форме путем нагрева, который проводится в вакууме до 600-700°С в течение 3 часов, с выдержкой в течение 1 часа. Последующий нагрев осуществляют до температуры спекания 1250-1300°С в течение 1 часа с выдержкой в течение 10 мин и охлаждают форму до нормальной температуры. Полученный сплав обладает высокими твердостью, прочностью на изгиб и на сжатие, износостойкостью и радиационной устойчивостью.

Формула изобретения RU 2 533 225 C2

Способ получения наноструктурированного сплава на основе карбида вольфрама, включающий смешивание порошков, содержащих карбид вольфрама, отличающийся тем, что осуществляют смешивание однородных гранул сплава ВК8 размером 1-5 мкм, составляющих (90±1) мас.%, и монокристаллического нанопорошка карбида вольфрама с размером частиц в диапазоне 10-200 нм с логнормальной функцией распределения частиц нанопорошка по размерам в количестве (10±1) мас.%, при этом полученную шихту после перемешивания подвергают одностадийному и низкотемпературному процессу спекания, состоящему в двухступенчатом нагреве формы в вакууме до 600-700°С в течение 3 часов с выдержкой в течение 1 часа и дальнейшем нагреве в течение 1 часа до температуры спекания 1250-1300°С с выдержкой при этой температуре в течение 10 минут и последующим охлаждением формы до нормальной температуры.

Документы, цитированные в отчете о поиске Патент 2014 года RU2533225C2

СПОСОБ ИЗГОТОВЛЕНИЯ СПЕЧЕННОГО ТВЕРДОГО СПЛАВА 2010
  • Абрамов Александр Васильевич
  • Андреев Виктор Николаевич
  • Боровский Георгий Владиславович
  • Клячко Лев Иосифович
  • Кудрявцева Вера Ивановна
  • Лукьянычев Сергей Юрьевич
  • Тамбовцева Алла Аганесовна
  • Фальковский Всеволод Александрович
RU2447169C2
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО СОСТАВА ТВЕРДОГО СПЛАВА 2007
  • Калмыков Владимир Ильич
  • Борисенко Николай Иванович
  • Башков Валерий Михайлович
  • Петровская Татьяна Михайловна
  • Кобицкой Иван Васильевич
RU2365465C1
WO 2011058167 A1, 19.05.2011
CN 101117674 A, 06.02.2008
Транспортное средство 1988
  • Кузьминов Константин Владимирович
SU1544674A1

RU 2 533 225 C2

Авторы

Кизнер Александр Германович

Кизнер Всеволод Германович

Даты

2014-11-20Публикация

2013-02-21Подача