ЛИПОТЕТРАПЕПТИДЫ НА ОСНОВЕ ДИЭФИРОВ L-ГЛУТАМИНОВОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ Российский патент 2014 года по МПК C07K5/09 A61K38/06 

Описание патента на изобретение RU2533554C1

Изобретение относится к области биоорганической химии, в частности производным аминокислот и пептидов, принадлежащих к классу алифатических диэфиров, содержащих четыре аминокислотных остатка.

Как известно, комплексация ДНК липидами обусловлена в основном электростатическими взаимодействиями между положительно заряженными липидами и отрицательно заряженной фосфатной группы нуклеиновой кислоты. Однако в природе узнавание и связывание нуклеиновых кислот белками включает также нековалентные взаимодействия, что также может влиять на трансфекционную активность. Для исследования данного явления был синтезирован ряд липидоподобных пептидов с различными по длине гидрофобными цепями: Lys-Trp-Lys (KWK), Lys-Gly-Gly (KGG), Lys-Gly-Lys (KGK) [Lamanna K., Lusic H., Camplo M., Bartheleme F. Grinstaff M.Charge-Reversal Lipids, Peptide-Based Lipids, and Nucleoside-Based Lipids for Gene Delivery // Accounts of chemical research. 2011. P.205-210].

Кроме того, в дополнение были проведены исследования на цитотоксичность полученных пептидных липидов. Полученные соединения проявили меньшую цитотоксичность, чем Липофектамин 2000. Недостатком данных соединений является их невысокая эффективность трансфекции.

Наиболее близким к заявленному техническому решению является ряд катионных липидов, содержащих дипептиды - L-лизил-L-глутамат или L-орнитил-L-глутамат, модифицированные алифатическими спиртами с длиной цепи C8-C18:

Катионные липосомы, полученные на основе данных липидов, проявили высокую трансфекционную эффективность на линиях клеток Hela, COS7, СНО, НЕК293 и меньшую цитотоксичность по сравнению с другими коммерчески доступными препаратами, такими как DOTAP-содержащие липосомы [Себякин Ю.Л., Буданова У.А. «pH-Чувствительные катионные липопетиды для создания транспортных систем медицинского назначения» // Биоорганическая химия. 2006. Т.32. №5. С.453-458].

Использование предлагаемых липотетрапептидов в качестве катионных векторов доставки генетического материала с большим количеством аминокислотных остатков в полярном блоке амфифила по сравнению с липодипептидами должно способствовать уменьшению размера образуемых в воде агрегатов и увеличению эффективности трансфекции.

Соединения и их синтез ранее в литературе не описаны и аналогов не имеют.

Техническим результатом предлагаемого изобретения является синтез ряда новых алифатических производных тетрапептидов, полярная часть которых состоит из аминокислотных последовательностей (Orn)2OrnGlu и (Lys)2LysGlu, а гидрофобная часть представлена остатками спиртов с длиной цепи C8-C16:

Для достижения указанного технического результата разработана схема получения липотетрапептидов, включающая следующие этапы: синтез этерифицированных остатками жирных спиртов производных L-глутаминовой кислоты, защита аминогрупп L-орнитина и L-лизина, активация карбоксильных групп и образование пептидной связи между этими компонентами, удаление защитных групп с полученного дипептидного производного, активация карбоксильных групп и образование пептидной связи с получением производных тетрапептидов, удаление защитных групп с получением липотетрапептидов.

Реализация данного изобретения подтверждается примерами.

Пример 1

Синтез диоктил-N-(N,N-ди-(L-лизил))-L-лизил-L-глутамат бистрифторацетата (Lys)2LysGlu(C8)2.

Смесь 2 г (0.0136 моль) L-глутаминовой кислоты, 3.2 г (0.0326 моль) октилового спирта и 3.1 г (0.0163 моль) n-толуолсульфокислоты нагревали на масляной бане при 130°C в течение 6 ч. После окончания реакции реакционную массу охлаждали до комнатной температуры, перекристаллизовывали из ацетона и промывали эфиром.

Для удаления тозильной группы 1.0 г соли растворяли в 50 мл хлороформа, промывали 5%-ным раствором гидрокарбоната натрия (2×80 мл), водой до pH 7, сушили сульфатом натрия. Растворитель отгоняли в вакууме. Получали 0.48 г (71%) диоктил-L-глутамата Glu(C8)2, Rf 0.47 (толуол-ацетонитрил, 3:1).

ИК-спектр (в пленке, νmax, см-1): 3387 (NH2), 2920 (С-H), 1725 (С=O), 1615 (NH2), 1470 (CH2), 1385 (CN), 1281 (CH3), 1189 (С-О-C), 1123 (О-C-С), 725 (NH2). 1H-ЯМР-спектр (DMSO-D6, δ, м.д.): 0.88 (т, 6Н, CH3); 1.25 (с, 20H, CH2); 1.38 (т, 4Н, COOCH2CH2); 1.67 (м, 2Н, CHCH2CH2), 1.82 (м, 2Н, CHCH2CH2). 2.36 (м, 2Н, CH2COO), 3.97 (м, 1H, COOCH2CH2), 4.29 (т, 2Н, NH2).

К раствору Nα,Nε-(ди-трет-бутилоксикарбонил)-L-лизина Boc2Lys 0.25 г (0.722 ммоль) в 4 мл хлороформа добавляли 0.108 г (0.794 ммоль) N-оксибензотриазола в 2 мл N,N-диметилформамида и при активном перемешивании охлажденный раствор 0.164 г (0,794 ммоль) дициклогексилкарбодиимида в 5 мл хлороформа. Смесь выдерживали 2 ч при охлаждении, выпавший осадок отфильтровывали. Контроль за ходом реакции осуществляли по данным тонкослойной хроматографии (ТСХ).

К полученному раствору добавляли 0.295 г (0,794) диоктил-L-глутамата Glu(C8)2 в 2 мл хлороформа. Смесь перемешивали при комнатной температуре 5 ч, растворитель отгоняли в вакууме. Продукт выделяли колоночной хроматографией на силикагеле в системе (толуол-ацетонитрил, 3:1). Выход диоктил-N-(бис-Вос-L-лизил)-L-глутамата Boc2LysGlu(C8)2 составил 0.278 г (53%), Rf 0.72 (толуол-хлороформ-метилэтилкетон-изопропанол, 10:6:3:1).

ИК-спектр (в пленке, νmax, см-1): 3996 (NH), 2912 (CH), 2900 (CH), 1740 (С=O), 1654(С=O, амид I), 1644 (NH, амид II), 1503, 1461 (СН), 1372 (СН), 1198, 1112 (С-O). 1H-ЯМР-спектр (DMSO-D6, δ, м. д.): 0.87 (6H, т, 2СН3), 1.23 (20H, с, 10 СН2), 1.41 (18H, с, 2C(CH3)3), 1.63-1.82 (4H, м, 2CHCH2CH2), 2.22 (2H, м, 2 СН2), 2.54 (2H, т, СН2СОО), 3.8 (4H, м, 2OCH2), 4.35 (2H, т, CH2), 5.6 (1H, д, CONH), 6,9 (1H, д, CONH).

Растворяли 0.2 г (0.286 ммоль) полученного соединения в 1 мл хлороформа и 1 мл безводной трифторуксусной кислоте. Раствор выдерживали при комнатной температуре 3 ч. Продукт выделяли препаративной ТСХ в системе (толуол-хлороформ-метилэтилкетон-изопропанол, 10:6:3:1). Выход диоктил-N-(L-лизил)-L-глутамат бистрифторацетата LysGlu(C8)2 0.229 г (95%), Rf 0.72 (метанол-хлороформ, 2:1). ИК-спектр (в пленке, νmax, см-1): 3331 (NH), 2942 (СН), 2828 (СН), 1725 (С=O), 1660 (С=O, амид I), 1640 (NH, амид II), 1358 (СН), 1209 (CF), 1107 (С-O), 959, 828, 792, 715. 1H-ЯМР-спектр (DMSO-D6, δ, м. д.): 0.85 (6H, т, 2 СН3), 1.23 (44H, с, 10 CH2), 1.53 (6H, м, 3СН2), 1.77-1.91 (4H, м, CHCH2CH2), 2.84 (2H, т, CH2COOH), 4.0 (4H, м, 2 OCH3), 4.28 (1H, м, СН), 7.3 (5.6 Н, с, 2NH3+).

К раствору Nα,Nε-(ди-трет-бутилоксикарбонил)-L-лизина 0.103 г (0.297 ммоль) в 4 мл хлороформа добавляли 0.044 г (0.327 ммоль) N-оксибензотриазола в 2 мл N,N-диметилформамида и при активном перемешивании охлажденный раствор 0,067 г (0,327 ммоль) дициклогексилкарбодиимида в 8 мл хлороформа. Смесь выдерживали 3 ч при охлаждении и 1 ч при комнатной температуре, выпавший осадок отфильтровывали. Контроль за ходом реакции осуществляли по данным ТСХ.

К полученному раствору добавляли 0,1 г (0,119) диоктил-N-(L-лизил)-L-глутамат бистрифторацетата в 3 мл хлороформа. Смесь перемешивали при комнатной температуре 8 ч, растворитель отгоняли в вакууме. Растворяли 0.2 г реакционной массы в 1 мл хлороформа и 2 мл безводной трифторуксусной кислоте. Раствор выдерживали при комнатной температуре 8 ч. Растворитель отгоняли в вакууме. Растворяли в хлороформе, выпавший осадок отфильтровывали. Фильтрат упаривали. Продукт выделяли препаративной ТСХ в системе (толуол-хлороформ-метилэтилкетон-изопропанол, 10:6:3:1). Выход диоктил-N-(N,N-ди-(L-лизил))-L-лизил-L-глутамат бистрифторацетата (Lys)3Glu(C8)2 8.3 г (8.2%), Rf 0.68 (метанол-хлороформ, 2:1).

Масс-спектр: [М+] 756.774; [М+ (матрица)] 683.733.

Пример 2.

Синтез дитетрадецил-N-(N,N-ди-(L-орнитил))-L-орнитил-L-глутамат бистрифторацетата

Аналогично диоктил-L-глутамата Glu(C8)2 Из 2.0 г (0.0136 моль) 1-глутаминовой кислоты, 6.4 г (0.0292 моль) миритилового спирта и 3.1 г (0.0163 моль) n-толуолсульфокислоты аналогично диоктил-L-глутамату получали 0.54 г (73%) дитетрадецил-L-глутамата G1u(C14)2, Rf 0.47 (толуол-ацетонитрил, 3:1).

ИК-спектр (в пленке, νmax, см-1): 3395 (NH2), 2945 (С-H), 1725 (С=O), 1632 (NH2), 1482 (СН2), 1381 (CN), 1281 (СН3), 1202 (С-О-C), 1126 (O-С-С), 753 (NH2).

К раствору Nα,Nε-(ди-трет-бутилоксикарбонил)-L-орнитина 0.25 г (0.75 ммоль) в 4 мл хлороформа добавляли 0.111 г (0.82 ммоль) N-оксибензотриазола в 2 мл N,N-диметилформамида и при активном перемешивании охлажденный раствор 0.169 г (0,82 ммоль) дициклогексилкарбодиимида в 8 мл хлороформа. Смесь выдерживали 4 ч при охлаждении, выпавший осадок отфильтровывали.

К полученному раствору добавляли 0.443 г (0,82 ммоль) дитетрадецил-L-глутамата в 2 мл хлороформа. Смесь перемешивали при комнатной температуре 4.5 ч, растворитель отгоняли в вакууме. Продукт выделяли препаративной ТСХ в системе толуол-хлороформ-метилэтилкетон-изопропанол, 10:6:3:1. Выход дитетрадецил-N-(бис-Boc-L-орнитил)-1-глутамата Boc2OrnGlu(C14)2 составил 0.327 г (51%), Rf 0.72 (толуол-хлороформ-метилэтилкетон-изопропанол, 10:6:3:1).

ИК-спектр (в пленке, νmax, см-1): 3996 (NH), 2914 (CH), 2900 (СН), 1741 (С=O), 1685 (С=O, амид I), 1644 (NH, амид II), 1500, 1460 (СН), 1374 (СН), 1200, 1100 (С-O). 1H-ЯМР-спектр (DMSO-D6, δ, м.д.): 0.85 (6 Н, т, 2 СН3), 1.23 (44 Н, с, 10 СН2), 1.37 (18H, с, 2 С(СН3)3), 1.81-1.97 (4H, м, 2CHCH2CH2), 2.34 (2H, м, 2 CH2), 2.87 (2H, т, CH2COO), 4.0 (4H, м, 2OCH2), 4.26 (1Н, т, CH), 5.7 (1H, д, CONH), 6.9 (1H, д, CONH).

Растворяли 0.3 г (0,351 ммоль) полученного соединения в 1 мл безводной трифторуксусной кислоты. Раствор выдерживали при комнатной температуре 2 ч. Продукт выделяли препаративной ТСХ в системе (толуол-хлороформ-метилэтилкетон-изопропанол, 10:6:3:1). Выход дитетрадецил-N-(L-орнитил)-L-глутамат бистрифторацетата OrnGlu(C14)2 0.328 г (97%), Rf 0.72 (метанол-хлороформ, 2:1).

ИК-спектр (в пленке, νmax, см-1): 3335 (NH), 2940 (CH), 2829 (СН), 1725 (С=O), 1660 (С=O, амид I), 1640 (NH, амид II), 1360 (СН), 1209 (CF), 1110 (С-O), 959, 822, 795, 710. 1H-ЯМР-спектр (DMSO-D6, δ, м.д.): 0.85 (6H, т, 2 CH3), 1.23 (44H, с, 10 CH2), 1.57 (6H, м, 3СН2), 1.79-1.89 (4H, м, 2CHCH2CH2), 2.85 (2H, т, CH2COOH). 4.1 (4H, м, 2 OCH3), 4.25 (1H, м, CH), 7.5 (5.6H, с, 2NH3+). Масс-спектр: [М+] 654.175.

К раствору Nα,Nε-(ди-трет-бутилоксикарбонил)-L-орнитина 0.068 г (0.292 ммоль) в 4 мл хлороформа добавляли 0.043 г (0.321 ммоль) N-оксибензотриазола в 2 мл N,N-диметилформамида и при активном перемешивании охлажденный раствор 0.066 г (0,321 ммоль) дициклогексилкарбодиимида в 8 мл хлороформа. Смесь выдерживали 3 ч при охлаждении и 1 ч при комнатной температуре, выпавший осадок отфильтровывали. К полученному раствору добавляли 0.1 г (0.117 ммоль) дитетрадецил-N-(L-орнитил)-L-глутамат бистрифторацетата в 2 мл хлороформа. Смесь перемешивали при комнатной температуре 12 ч, растворитель отгоняли в вакууме. Полученную смесь растворяли 0.2 г в 1 мл хлороформа и 2 мл безводной трифторуксусной кислоте. Раствор выдерживали при комнатной температуре 8 ч. Растворитель отгоняли в вакууме. Растворяли в хлороформе, выпавший осадок отфильтровывали. Фильтрат упаривали. Продукт дитетрадецил-N-(N,N-ди-(L-орнитил))-L-орнитил-L-глутамат бистрифторацетат (Orn)2OrnGlu(C14)2 выделяли препаративной ТСХ в системе (толуол-хлороформ-метилэтилкетон-изопропанол, 10:6:3:1), затем в системе (метанол-хлороформ, 2:1). Выход 14 мг (9.7%), Rf 0.68 (метанол-хлороформ, 2:1).

1H-ЯМР-спектр (DMSO-D6, δ, м.д.): 0.84 (6H, т, 2CH3), 1.23 (44H, с, 22 CH2), 1.36 (4H, м, 2CH2), 1.52 (8H, м, 4CH2), 1.67 (4H, м, 2βСН2), 2.5 (2H, м, CH2), 2.7 (2H, т, CH2COOH), 1.92-1.98 (2H, м, СН2СОО), 2.87 (4H, м, 2СН2), 3.00 (2H, м, CH2) 3.81 (2H, м, 2CH), 4.00 (4H, м, 2 OCH3), 4.25 (2H, м, 2CH), 7.8 (12H, с, 4NH3+).

Масс-спектр: [М+] 882.627; [М+] 1338.705.

Пример 3.

Аналогично из 0.1 г (0.00065 моль) L-глутаминовой кислоты, 0.32 г (0.00146 моль) гексадецилового спирта, и 0.25 г (0.75 ммоль) Nα,Nε-(ди-трет-бутилоксикарбонил)-L-орнитина получали дигексадецил-N-(N,N-ди-(L-орнитил))-L-орнитил-L-глутамат бистрифторацетат (Orn)2OrnGlu(C16)2. Выход 43 мг (17%), Rf 0.73 (метанол-хлороформ, 2:1). Масс-спектр: [М+] 896.122

Синтезированные соединения могут быть использованы для получения липосомальных водных дисперсий.

Полученные значения критической концентрации везикулообразования ККВ составляют 10-5 М, что на порядок ниже, чем у прототипа - липодипептида (ККВ 10-4).

С помощью лазерного анализатора размера частиц определен диаметр полученных везикул, который составлял для полученных липотетрапептидов от 80 до 100 нм в зависимости от структуры. Размер частиц для липодипептидов составлял от 200 нм до 1 мкм.

Эффективность трансфекции синтезированных липотетрапептидов в составе катионных липосом, исследованная на клетках линии НЕК293, на 3-5% выше, чем для липодипептидов.

Похожие патенты RU2533554C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЛИПОДИПЕПТИДОВ 2011
  • Себякин Юрий Львович
RU2463307C1
ЛИПОТРИПЕПТИДЫ НА ОСНОВЕ ДИЭФИРОВ L-ГЛУТАМИНОВОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2014
  • Колоскова Олеся Олеговна
  • Буданова Ульяна Александровна
  • Себякин Юрий Львович
RU2575851C1
1-ГЕКСАДЕЦИЛ-5-(1-ПИРЕНБУТИЛ)-N-(L-ОРНИТИЛ)-L-ГЛУТАМАТ БИСХЛОРИД 2009
  • Себякин Юрий Львович
  • Буданова Ульяна Александровна
RU2409587C2
ФОЛАТ-ПОЛИЭТИЛЕНГЛИКОЛЬ-ДИГЕКСАДЕЦИЛ-L-ГЛУТАМАТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2011
  • Себякин Юрий Львович
  • Буданова Ульяна Александровна
  • Колоскова Олеся Олеговна
RU2472796C1
БИВАЛЕНТНЫЕ НЕОГЛИКОКОНЪЮГАТЫ НА ОСНОВЕ ДИЭФИРА L-ГЛУТАМИНОВОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2011
  • Себякин Юрий Львович
  • Большебородова Анна Константиновна
RU2462471C1
ТЕТРАВАЛЕНТНЫЕ НЕОГЛИКОКОНЪЮГАТЫ С УГЛЕВОДНЫМ РАЗВЕТВЛЯЮЩИМ ЯДРОМ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2014
  • Себякин Юрий Львович
  • Щелик Инга Сергеевна
RU2575925C1
СПОСОБ ПОЛУЧЕНИЯ ГЕПТАПЕПТИДА И ПРОМЕЖУТОЧНЫЕ СОЕДИНЕНИЯ ДЛЯ ЕГО ПОЛУЧЕНИЯ 2006
  • Беспалова Жанна Дмитриевна
  • Молокоедов Александр Сергеевич
  • Овчинников Михаил Владимирович
  • Палькеева Марина Евгеньевна
  • Сидорова Мария Владимировна
RU2303603C2
КАТИОННЫЕ ДИМЕРНЫЕ АМФИФИЛЫ В КАЧЕСТВЕ АГЕНТОВ ТРАНСФЕКЦИИ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2002
  • Себякин Ю.Л.
  • Скрипникова М.А.
RU2233834C2
СПОСОБ ПОЛУЧЕНИЯ ПРОИЗВОДНЫХ 7-(ГЕТЕРО)АРИЛ-4,5,6,7-ТЕТРАГИДРО[1,2,3]ТРИАЗОЛО[1,5-A]ПИРИДИНА 2013
  • Иванов Константин Львович
  • Виллемсон Елена Валентиновна
  • Будынина Екатерина Михайловна
  • Иванова Ольга Александровна
  • Трушков Игорь Викторович
RU2563254C2
ДУШИСТЫЕ 5-БЕНЗИЛ-1,3-ДИАЗААДАМАНТАН-6-ОНЫ 2013
  • Кузнецов Анатолий Иванович
  • Сенан Ибрагим Мохаммед Хасан
  • Аласади Рахман Тама Хайваль
RU2552649C1

Реферат патента 2014 года ЛИПОТЕТРАПЕПТИДЫ НА ОСНОВЕ ДИЭФИРОВ L-ГЛУТАМИНОВОЙ КИСЛОТЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ

Изобретение относится к области биоорганической химии, в частности, производным аминокислот и пептидов, принадлежащих к классу алифатических диэфиров, содержащих четыре аминокислотных остатка. Техническим результатом предлагаемого изобретения является синтез ряда новых алифатических производных тетрапептидов, полярная часть которых состоит из аминокислотных последовательностей (Orn)2OrnGlu и (Lys)2LysGlu, а гидрофобная часть представлена остатками спиртов с длиной цепи C8-C16. Использование катионных векторов доставки с четырьмя аминокислотными остатками в полярном домене амфифила способствует уменьшению размера образуемых в воде агрегатов и увеличению эффективности трансфекции. 2 н.п. ф-лы, 3 пр.

n=7-15 m=3,4 k=3,4

Формула изобретения RU 2 533 554 C1

1. Липотетрапептиды на основе диэфиров L-глутаминовой кислоты
,
где n=7-15
m=3,4
k=3,4.

2. Способ получения липотетрапептидов, охарактеризованных в п.1 формулы изобретения, включающий в себя следующие этапы: синтез этерифицированных остатками жирных спиртов производных L-глутаминовой кислоты, защита аминогрупп L-орнитина и L-лизина, активация карбоксильных групп и образование пептидной связи между этими компонентами, удаление защитных групп с полученного дипептидного производного, активация карбоксильных групп и образование пептидной связи с получением производных тетрапептидов, удаление защитных групп с получением липотетрапептидов.

Документы, цитированные в отчете о поиске Патент 2014 года RU2533554C1

СПОСОБ ПОЛУЧЕНИЯ ЛИПОДИПЕПТИДОВ 2011
  • Себякин Юрий Львович
RU2463307C1
КАТИОННЫЕ ДИМЕРНЫЕ АМФИФИЛЫ В КАЧЕСТВЕ АГЕНТОВ ТРАНСФЕКЦИИ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2002
  • Себякин Ю.Л.
  • Скрипникова М.А.
RU2233834C2
1-ГЕКСАДЕЦИЛ-5-(1-ПИРЕНБУТИЛ)-N-(L-ОРНИТИЛ)-L-ГЛУТАМАТ БИСХЛОРИД 2009
  • Себякин Юрий Львович
  • Буданова Ульяна Александровна
RU2409587C2
US 20100279955 A1, 04.11.2010

RU 2 533 554 C1

Авторы

Себякин Юрий Львович

Буданова Ульяна Александровна

Колоскова Олеся Олеговна

Даты

2014-11-20Публикация

2013-04-12Подача