СПОСОБ ПОЛУЧЕНИЯ ФТОРИДА ВОДОРОДА ИЗ ОТХОДОВ АЛЮМИНИЕВОГО ПРОИЗВОДСТВА Российский патент 2014 года по МПК C01B7/19 

Описание патента на изобретение RU2534792C1

Изобретение относится к производству фторида водорода сернокислотным разложением фторсодержащих соединений.

Известен наиболее распространенный способ получения фтористого водорода обработкой флюорита серной кислотой в прямоточных или противоточных печах при 180-220°C. При этом флюорит и серная кислота предварительно смешиваются в шнеках-смесителях в соотношении 0,70-0,75:1. Степень разложения флюоритового концентрата составляет 93-95%. [Гузь С.Ю. Производство криолита, фтористого алюминия и фтористого натрия. - М.: Металлургия, 1964. - 238 с.].

Недостатком данного способа является низкая степень разложения плавикового шпата, большая длительность процесса, образование настылей на внутренней поверхности барабана.

Известен способ получения безводного фтороводорода пирогидролизом фторуглеродсодержащих отходов алюминиевых производств [Патент РФ №2022914, опубликован 15.11.1994]. Основой этого способа является извлечение фтора из углеродистых материалов, согласно которому отходы подвергают пирогидролизу во вращающихся печах.

Недостаток получения фтороводорода пирогидролизом в том, что для мелкодисперсных отходов способ является непригодным, поскольку сопровождается большим пылеуносом, то есть значительная часть мелких частиц выносится газовым потоком из технологических агрегатов раньше, чем протекают и завершаются процессы окисления углерода и пирогидролиза фторидов.

Также известен способ получения фтористого водорода сернокислотным разложением фторсодержащих продуктов (способ прототип) [Патент РФ №2110470, опубликован 10.05.1998]. В качестве фторсодержащих продуктов используют высокодисперсные отходы электролитического производства алюминия (шлам газоочистки и пыль электрофильтров) с развитой поверхностной структурой. Отходы и серная кислота смешиваются в шнековом смесителе и вместе подаются в печь, массовое соотношение между отходами и серной кислотой - 0,65-0,75:1. Процесс проходит при 260-320°C. Время процесса составляет 3,5-4 часа.

Недостатками данного способа являются: большой расход серной кислоты, обусловленный ее интенсивным испарением при заданных температурах, а также связанный с проблемой ее диффузии сквозь слой углеродной составляющей отходов к поверхности фторсодержащих частиц; малое время контакта реагентов, и как следствие, низкая степень вскрытия фторуглеродсодержащих отходов.

Задачей изобретения являлась разработка способа получения фторида водорода сернокислотным разложением фторсодержащих соединений с большей степенью реагирования и, как следствие, с большим выходом фторида водорода, чем заявлено в прототипе.

Эта задача решена следующим способом. В соответствии с прототипом в качестве исходного сырья используются отходы алюминиевого производства, а именно пыль электрофильтров, усредненного фазового состава: Na3AlF6 - 12,1; Na5Al3F14 - 11,0; NaF -2,91; AlF3 - 1,68; CaF2 - 1,48; MgF2 - 1,36; KF - 1,34; Al2O3 - 30,19; Na2SO4 - 4,08; Fe2O3 - 2,0; SiO2 - 0,45; C (графит) - 26,73; смола (органические компоненты) - 4,68. Данные отходы измельчают до размера частиц - 0,2 мм, помещают на поддоны слоем, высотой не более 0,5 см, далее прокаливают при 800-850°C в подовых печах, в которых установлена система подачи воздуха и отвода образующихся газов. При прокаливании отходов происходит выгорание углеродной составляющей, которая окружает фторсодержащие частицы и препятствует контакту серной кислоты с поверхностью таких частиц. Также устранение углеродной составляющей снижает расход серной кислоты, необходимой для смачивания угля.

Образующийся таким образом криолит-глиноземный концентрат подается в барабанно-вращающуюся печь вместе с серной кислотой в соотношении 0,9:1 соответственно. Температура процесса сульфатизации концентрата составляет 240-260°C, данная температура является оптимальной для вскрытия криолит-глиноземного концентрата и предотвращения чрезмерного испарения серной кислоты. Время протекания химической реакции составляет 2 часа.

Пример: навеску пыли электрофильтров, массой 120 г размещают в выпарную чашу слоем высотой не более 0,5 см и прокаливают в подовой печи при 800-850°C. Образующийся криолит-глиноземный концентрат, массой 80 г, смешивают с 93%-ной серной кислотой, массой 215 г, и помещают смесь в стальной агитатор с плотно прикрепленной крышкой. Герметизируют систему отвода отходящих газов. Для сорбции реакционных газов готовят емкость с 5%-ным раствором аммиака. Нагревают смесь до 240-260°C. Окончанием процесса считается прекращение выделения пузырьков газа в абсорбционной емкости. Степень извлечения фтора рассчитывается исходя из данных потенциометрического определения концентрации фтор-иона в абсорбционном растворе в соответствии с ГОСТ 4386-89 и по количеству нерастворимого остатка сульфатизации. Степень реагирования составляет 97-99%.

Техническим результатом изобретения является снижение количества серной кислоты, необходимой для проведения реакции сернокислотного разложения отходов алюминиевого производства, а также снижение температуры процесса путем устранения отжигом углеродной составляющей отходов.

Похожие патенты RU2534792C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ФТОРУГЛЕРОДСОДЕРЖАЩИХ ОТХОДОВ АЛЮМИНИЕВОГО ПРОИЗВОДСТВА 2015
  • Куликов Борис Петрович
RU2586389C1
СПОСОБ ПОЛУЧЕНИЯ ФТОРИСТОГО ВОДОРОДА 2012
  • Куликов Борис Петрович
  • Николаев Михаил Дмитриевич
  • Кузнецов Александр Александрович
  • Сомов Владимир Владимирович
RU2505476C1
СПОСОБ ПОЛУЧЕНИЯ ФТОРИСТОГО ВОДОРОДА 1995
  • Истомин С.П.
  • Веселков В.В.
  • Куликов Б.П.
  • Рагозин Л.В.
  • Мясникова С.Г.
  • Коннова Н.А.
  • Заруба А.А.
  • Пивнев А.И.
RU2110470C1
СПОСОБ ПОЛУЧЕНИЯ ФТОРИСТОГО АЛЮМИНИЯ 2011
  • Ржечицкий Эдвард Петрович
  • Кондратьев Виктор Викторович
  • Ржечицкий Александр Эдвардович
  • Ржечицкая Анфиса Ивановна
RU2462418C1
СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННОГО БИФТОРИДА КАЛИЯ 2016
  • Биспен Татьяна Алексеевна
  • Котельников Станислав Евгеньевич
  • Молдавский Дмитрий Дмитриевич
RU2616715C1
СПОСОБ ПОЛУЧЕНИЯ КРИОЛИТА 1997
  • Истомин С.П.
  • Веселков В.В.
  • Рагозин Л.В.
  • Мясникова С.Г.
  • Куликов Б.П.
RU2140396C1
Способ переработки отработанной углеродной футеровки алюминиевого электролизера 2016
  • Кондратьев Виктор Викторович
  • Ржечицкий Эдвард Петрович
  • Петровский Алексей Анатольевич
RU2630117C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО ЖЕЛЕЗА 2013
  • Гринберг Игорь Самсонович
  • Гринберг Андрей Игоревич
RU2532713C1
СПОСОБ ПОЛУЧЕНИЯ ПОРТЛАНДЦЕМЕНТА 2015
  • Куликов Борис Петрович
  • Афанасин Владимир Анатольевич
  • Илло Роман Владимирович
  • Кривченко Ольга Сергеевна
RU2577871C1
СПОСОБ ПЕРЕРАБОТКИ УГЛЕРОДИСТОГО ШЛАМА, ВЫВОДИМОГО ИЗ СИСТЕМЫ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ АЛЮМИНИЯ 1999
  • Барановский В.В.
  • Барановский А.В.
RU2167210C2

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ ФТОРИДА ВОДОРОДА ИЗ ОТХОДОВ АЛЮМИНИЕВОГО ПРОИЗВОДСТВА

Изобретение может быть использовано в химической промышленности. Способ получения фторида водорода из отходов алюминиевого производства включает сернокислотное разложение криолитсодержащих отходов. В качестве отходов алюминиевого производства берут пыль электрофильтров. Отходы предварительно измельчают до размера частиц 0,2 мм, помещают на поддоны слоем высотой не более 0,5 см и подвергают обжигу при температуре 800-850°C в подовых печах. Сернокислотное разложение концентрата, полученного после обжига отходов, проводят при температуре 240-260°C. Изобретение позволяет снизить расход серной кислоты, повысить выход фторида водорода. 1 пр.

Формула изобретения RU 2 534 792 C1

Способ получения фторида водорода из отходов алюминиевого производства, включающий сернокислотное разложение криолитсодержащих отходов, отличающийся тем, что отходы предварительно измельчают до размера частиц 0,2 мм, помещают на поддоны слоем высотой не более 0,5 см, далее подвергают обжигу при температуре 800-850°C в подовых печах для удаления углеродной составляющей, в качестве отходов алюминиевого производства берут пыль электрофильтров, сернокислотное разложение концентрата, полученного после обжига отходов, проводят при температуре 240-260°C.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534792C1

СПОСОБ ПОЛУЧЕНИЯ ФТОРИСТОГО ВОДОРОДА 1995
  • Истомин С.П.
  • Веселков В.В.
  • Куликов Б.П.
  • Рагозин Л.В.
  • Мясникова С.Г.
  • Коннова Н.А.
  • Заруба А.А.
  • Пивнев А.И.
RU2110470C1
СПОСОБ ПОЛУЧЕНИЯ ФТОРОВОДОРОДА 2010
  • Петлин Илья Владимирович
  • Крайденко Роман Иванович
  • Дьяченко Александр Николаевич
RU2453495C1
СПОСОБ ПОЛУЧЕНИЯ ФТОРИСТОГО ВОДОРОДА 1991
  • Комлев М.Ю.
  • Антипина Т.П.
  • Истомин С.П.
  • Кохановский С.А.
RU2022914C1
JP 61036103 A, 20.02.1986

RU 2 534 792 C1

Авторы

Дьяченко Александр Николаевич

Крайденко Роман Иванович

Петлин Илья Владимирович

Даты

2014-12-10Публикация

2013-05-24Подача