СПОСОБ ДОБЫЧИ ВЯЗКОЙ НЕФТИ Российский патент 2014 года по МПК E21B43/24 E21B43/22 

Описание патента на изобретение RU2534870C2

Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки запасов вязкой и тяжелой нефти термохимическими методами.

Известен способ разработки нефтяных месторождений, включающий создание в пласте тепловой оторочки с целью нагрева призабойной зоны пласта до температуры окисления нефти с последующей закачкой смеси воды и воздуха (SU 329306, 1972).

Недостатками способа являются сложность в осуществлении, неприменимость в условиях глубокозалегающих пластов, неэффективность, связанная с быстрым прорывом газа к забою добывающих скважин.

Известен способ разработки нефтяного месторождения, включающий бурение дополнительных горизонтальных стволов между вертикальными добывающими скважинами, в одну из которых осуществляют закачку в пласт 18-50% раствора перекиси водорода со стабилизатором, в качестве которого используется крахмал, а в другую горизонтальную скважину подают 5% раствор перманганата натрия, после чего раствор пероксида водорода и перманганата натрия продавливают водой в пласт, после чего осуществляют технологическую выдержку, в ходе которой добывают нефть за счет давления продуктов реакции, после чего дополнительно вытесняют нефть путем закачивания в пласт воды (RU 2278250, 2006).

Известный способ имеет следующие недостатки: требует значительного дополнительного бурения, неприменим для добычи вязкой нефти, малоэффективен из-за значительного технологического перерыва.

Известен способ обработки призабойной зоны скважины на основе перекиси водорода, при котором производят закачку 40-55% раствора пероксида водорода с добавкой вещества, оказывающего благотворное действие на пласт, причем закачивание осуществляют через катализатор, размещенный в фильтре на хвостовике насосно-компрессорных труб (заявка RU 2004100605, 2005).

Данный способ не позволяет применять его для добычи тяжелой и вязкой нефти, т.к. при разложении концентрированного раствора пероксида водорода образуется нагретая до высокой температуры водогазовая агрессивная смесь, которая быстро разрушит подземное оборудование и может оказать отрицательное влияние на устойчивость нижней части эксплуатационной колонны. Поэтому согласно данному способу в призабойную зону можно закачать только небольшой объем раствора пероксида водорода, что недостаточно для добычи нефти.

Также известен способ добычи вязкой нефти из геологических резервуаров с использованием пероксида водорода, согласно которого в пласт закачивается раствор пероксида водорода, в который вводят замедлитель (кислота), чтобы реагент достиг частей пласта, содержащих нефть (US 4867238, 1989).

Недостатками способа являются невозможность точного определения глубины, на которую необходимо доставить реагент, и неуправляемость процесса разложения реагента в пласте, т.к. растворение в кислоте железной окалины и компонентов породы может вызвать неконтролируемое разложение пероксида водорода.

Из известных способов наиболее близким к предлагаемому является способ добычи вязкой нефти, включающий термохимическую обработку призабойной зоны скважины с использованием перекиси водорода, предусматривающий закачку в пласт раствора перекиси водорода и технологическую выдержку для распада перекиси водорода с последующим пуском скважины в эксплуатацию (Бейлес Дж.Х. Новая методика тепловой обработки призабойной зоны скважины с использованием перекиси водорода. Нефтегазовые технологии, 1998, №5, 6, с.52-54).

Применение термохимического метода позволяет создать источник тепла, необходимый для придания подвижности вязкой нефти, непосредственно в пласте и/или на забое скважины. За счет генерирования тепла непосредственно в пласте и/или на забое скважины значительно снижаются непроизводительные потери тепла в стволе скважины, исчезает необходимость в значительной поверхностной инфраструктуре (парогенераторах, подогревателях для воды и т.п.), что позволяет применять способ в условиях глубоко залегающих пластов и месторождений, интервалы которых включают многолетние мерзлотные породы.

Недостатком известного способа являются недостаточная эффективность, обусловленная как длительной остановкой скважины на технологическую выдержку, так и отсутствием контроля за процессом разложения пероксида водорода.

Вследствие того, что в пласте и призабойной зоне пласта содержится большое количество твердых веществ (минералов, железной окалины и т.п.) природного и техногенного происхождения, являющихся эффективными катализаторами разложения пероксида водорода, остаточная нефть может легко вступать в реакцию в пероксидом водорода и кислородом с выделением большого количества тепла. Так как нет точной информации о составе минералов и веществ на забое и в призабойной зоне пласта, то процессы разложения пероксида водорода и реакция окисления нефти являются неуправляемыми и их неконтролируемое развитие может привести к серьезным осложнениям при добыче нефти. Высокоэкзотермические процессы разложения пероксида водорода и окисления нефти могут привести в условиях ограниченного теплоотвода к поджигу пласта, что недопустимо.

Более близким к изобретению является способ термического воздействия на нефтесодержащие и/или керогеносодержащие пласты с высоковязкой и тяжелой нефтью (RU 2447276, 2012). Согласно данному способу рабочий агент - парогазокаталитическую смесь, образованную при сжигании в каталитическом реакторе жидкой или газообразной углеродсодержащей топливной смеси за счет экзотермической реакции каталитического беспламенного окисления жидких или газообразных углеродсодержащих топливных смесей, подают под давлением в нефтесодержащие и/или керогеносодержащие пласты. Полученный при этом продукт смешивают с обогатительной смесью, содержащей катализатор для обеспечения внутрипластового термопарогазокаталитического воздействия на продуктивный пласт. Жидкая топливная смесь состоит предпочтительно из воды, метанола и перекиси водорода, при этом в качестве обогатительной смеси для получения рабочего агента используют газообразную смесь, включающую углекислый газ и азот. Газообразная топливная смесь состоит предпочтительно из метана и воздуха, при этом в качестве обогатительной смеси для получения рабочего агента используют смесь, включающую воду, азот и углекислый газ. Катализатор для обеспечения внутрипластового термопарогазокаталитического воздействия на продуктивный пласт содержит наноразмерные частицы предпочтительно благородных металлов или оксидов переходных металлов, выбранных из группы, включающей золото, платину, палладий, серебро, рутений, медь, кобальт, железо, марганец, кадмий, никель, ванадий или их комбинации.

Недостатки указанного способа заключаются в следующем. Способ требует использования сложного подземного и надземного оборудования, подачи с поверхности большого объема дорогостоящих реагентов, газов и жидкостей, включая наночастицы благородных металлов или оксидов металлов. Осуществление способа получения термопарогазокаталитического флюида приводит к разрушению прискважинной зоны пласта и самой скважины из-за высокой температуры, т.е. происходит создание аварийной ситуации. Окислительные процессы в генераторе сопровождаются образованием сажи, способной полностью прекратить поступление флюидов в пласт, что наблюдается при работе всех забойных парогазогенераторов с использованием процессов горения. Образующийся флюид содержит в своем составе много азота (инертной составляющей воздуха), что приводит к преждевременному прорыву флюида к добывающим скважинам и снижению эффекта от воздействия. Высокие затраты на оборудование и реагенты, непродолжительность воздействия при применении способа не позволяют достичь эффективности при добыче вязкой нефти.

Задачей изобретения является разработка способа добычи вязкой нефти, обеспечивающего повышение эффективности добычи вязкой нефти.

Поставленная задача достигается тем, что в способе добычи вязкой нефти предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости призабойной зоны пласта закачивают глинистый буровой шлам, содержащий глинистые частицы - катализатор разложения пероксида водорода и частицы песка, обеспечивающие проницаемость катализаторной подушки, или суспензию смеси, содержащую, мас.%: катализатор разложения пероксида водорода - порошок оксида двух-, или трех-, или четырехвалентного металла 20-50, песок или пропант остальное, после чего производят закачку в пласт одновременно 10,0-50,0%-ного водного раствора пероксида водорода и 1,0-30,0%-ного водного раствора или суспензии бикарбоната щелочного металла и/или бикарбоната аммония, затем буфера воды из системы поддержания пластового давления с последующей откачкой нефти.

Растворимость и скорость растворения бикарбоната щелочного металла и бикарбоната аммония в воде увеличиваются по мере роста температуры. В результате выделения тепла при разложении пероксида водорода температура закачиваемой в пласт смеси будет быстро увеличиваться, что будет способствовать росту растворимости и скорости растворения солей в воде. Поэтому в пласт можно закачивать не только растворы бикарбоната щелочного металла и/или бикарбоната аммония, а и их суспензии в воде.

Достигаемый технический результат заключается в обеспечении разделения экзотермических процессов разложения пероксида водорода, бикарбоната щелочных металлов или бикарбоната аммония и процессов окисления нефти. При этом процессы разложения пероксида водорода и бикарбоната щелочного металла или бикарбоната аммония локализуются в призабойной зоне пласта, вследствие чего процесс окисления нефти происходит в удаленной от прискважинной зоны пласта области и/или непосредственно в пласте.

В качестве бикарбонатов щелочных металлов или бикарбоната аммония используют технические бикарбонат натрия, или бикарбоната аммония, или бикарбонат калия, или их смесь.

Способ осуществляют следующим образом.

Предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости призабойной зоны пласта закачивают глинистый буровой шлам, содержащий глинистые частицы-катализатор разложения пероксида водорода и частицы песка, обеспечивающие проницаемость катализаторной подушки, или суспензию смеси, содержащую, мас.%, катализатор разложения пероксида водорода - порошок оксида двух-, или трех-, или четырехвалентного металла 20-50, песок или пропант остальное. После чего производят закачку в пласт одновременно 10,0-50,0 мас.%-ного водного раствора пероксида водорода и 1,0-30,0 мас.%-ного водного раствора (суспензию) бикарбоната щелочных металлов и/или бикарбоната аммония. Сформированная катализаторная подушка быстро и эффективно разлагает пероксид водорода, что приводит к повышению температуры закачиваемой жидкости. Рост температуры приводит к термической диссоциации бикарбоната щелочного металла или бикарбоната аммония по реакциям:

где Me - ион калия или натрия.

Повышение щелочности раствора дополнительно ускоряет разложение пероксида водорода.

Таким образом, в результате процессов каталитического разложения пероксида водорода и термического разложения бикарбонатов щелочных металлов и/или бикарбоната аммония в пласт поступает горячая водогазовая смесь, содержащая кроме кислорода и углекислого газа:

- в случае использования раствора бикарбонатов щелочных металлов-карбонаты щелочных металлов;

- в случае использования бикарбоната аммония - аммиак;

- в случае использования смеси бикарбонатов щелочных металлов и аммония - карбонаты щелочных металлов и аммиак.

Температуру водогазовой смеси и содержание в ней кислорода и углекислого газа можно регулировать, меняя концентрацию пероксида водорода и бикарбоната щелочного металла и/или бикарбоната аммония.

Эффективными катализаторами разложения пероксида водорода являются, например, пиролюзит (оксид марганца IV), являющийся отходом витаминной промышленности, а также оксиды двух-, трех- и четырехвалентного железа или их смесь.

В качестве катализатора разложения пероксида водорода возможно использовать глинистый буровой шлам, полученный в результате разбуривания интервалов глинистых пород. Буровой шлам содержит кроме глинистых частиц, обладающих каталитическим воздействием на процесс разложения пероксида водорода, еще и частицы песка, обеспечивающие проницаемость катализаторной подушки для воды, газов и раствора пероксида водорода.

Катализаторная подушка должна обладать не только высокой эффективностью для разложения пероксида водорода, но и высокой проницаемостью, для того, чтобы закачивание состава в пласт происходило с большой скоростью, что и обеспечивается хорошей проницаемостью катализаторной подушки. Проницаемость катализаторной подушки должна быть не ниже средней проницаемости призабойной зоны пласта. Для получения катализаторной подушки необходимой проницаемости к ней возможно добавлять песок или пропант. Порошкообразный катализатор в смеси с песком или пропантом закачивают в призабойную зону в виде суспензии в закачиваемой воде.

Целесообразно использовать технический пероксид водорода с концентрацией не выше 50 мас.%. Использование более концентрированного раствора не рекомендуется в целях обеспечения безопасности. Для закачивания используют растворы пероксида водорода с концентрацией от 10 до 50 мас.%, которые готовят из более концентрированных растворов путем разбавления водой, не содержащей солей тяжелых металлов.

Используемый в заявляемом изобретении реагент - пероксид водорода является высокореакционным соединением, способным быстро разлагаться с выделением большого количества тепла и кислорода, который является эффективным окислителем. Многие вещества и особенно поверхности (например, горных пород, черных металлов и т.п.) являются эффективными катализаторами экзотермического разложения пероксида водорода. Нефть также ускоряет распад пероксида водорода. Кислород является высокоэффективным окислителем нефти, причем реакция сопровождается большим выделением тепла (70-100 ккал/моль поглощенного кислорода).

В пласте и призабойной зоне пласта содержится большое количество твердых веществ (минералов, железной окалины и т.п.) природного и техногенного происхождения, являющихся эффективными катализаторами разложения пероксида водорода. Остаточная нефть может легко вступать в реакцию с пероксидом водорода и кислородом с выделением большого количества тепла. Так как невозможно точно знать состав минералов и веществ на забое и в призабойной зоне пласта, процессы разложения пероксида водорода и реакция окисления нефти являются неуправляемыми, их неконтролируемое развитие может привести к серьезным осложнениям при добыче нефти. Высокоэкзотермические процессы разложения пероксида водорода и окисления нефти могут привести в условиях ограниченного теплоотвода к поджигу пласта, что недопустимо.

Разделение процессов разложения пероксида водорода, термической диссоциации бикарбоната щелочного металла, например натрия и/или бикарбоната аммония, и процессов окисления нефти делает процесс воздействия регулируемым и управляемым, позволяет избежать чрезмерного разогрева призабойной зоны пласта и связанных с этим процессов разрушения породы и повреждения подземного оборудования. Перегрев призабойной зоны будет также приводить к непроизводительной потере тепла в выше- и нижележащие интервалы пласта, не содержащие нефти.

Использование совокупности описываемых признаков приводит к неожиданному результату - увеличению глубины проникновения окислителя в пласт, что обеспечивает увеличение глубины обработки и позволяет процессу окисления нефти протекать в удаленной от прискважинной зоны пласта области и/или непосредственно в пласте и, как следствие, приводит к повышению степени извлечения вязкой нефти.

В нижеприведенной таблице 1 приведена оценка значений температуры водогазовой смеси, поступающей в пласт после полного разложения пероксида водорода. Оценку проводят исходя из теплового эффекта реакции разложения, равного 22,6 ккал/моль, средней теплоемкости реакционной смеси 1 кал/г*°С и исходной температуры раствора, равной 20°С.

При концентрации пероксида водорода, равной и выше 10 мас.%, температура смеси достаточна для начала самопроизвольной реакции автоокисления нефти кислородом, которая сопровождается выделением 70-100 ккал/моль поглощенного кислорода.

Тепло, выделившееся в ходе реакции автоокисления остаточной нефти, позволит поддерживать высокую температуру воды и компенсировать потери тепла в выше- и нижележащие горизонты, а также на нагрев породы коллектора и пластовых флюидов.

В таблицах 2-4 приведен примерный состав водогазовой смеси, образовавшейся при каталитическом и термическом разложении растворов, содержащих пероксид водорода, бикарбонат аммония и/или бикарбонат натрия. При расчете приняли, что все реакции разложения идут количественно. При расчете объемной доли газов в газовой фазе не учитывали растворимость газов в нагретом до высокой температуры водном растворе.

Данные табл.2-4 показывают, что реакционная смесь, образующаяся в результате термического разложения смеси растворов пероксида водорода и бикарбоната натрия и/или аммония, содержит значительное количество СО2, снижающего вязкость нефти, и значительное количество щелочных компонентов, улучшающих смачиваемость коллектора водой, что также способствует повышению эффективности вытеснения нефти.

Для продвижения тепловой оторочки в пласте и для более полного использования тепла процесса в пласт закачивают воду из системы поддержания пластового давления.

Способ иллюстрируется нижеприведенными примерами, не ограничивающими его использование.

Пример 1

Проницаемость катализаторной подушки определяется экспериментально. Первоначально определяют проницаемость для воды пласта в зоне воздействия путем использования кернового материала месторождения.

Затем выбранный катализатор (например, Fе2О3) смешивают в различных весовых отношениях с выбранным для этого песком или пропантом, набивают этой смесью корпуса моделей пласта, насыщают водой и измеряют проницаемость по воде стандартными методами. Затем по результатам исследования выбирают состав, имеющий проницаемость выше, чем проницаемость призабойной зоны пласта.

Пример определения приведен в таблице 5.

Средняя проницаемость призабойной зоны пласта месторождения составляет 0,85 мкм2. Нижеприведенные данные показывают, что для создания катализаторной подушки рекомендуется использовать смесь, содержащую 20-30 мас.% катализатора и песок - остальное.

Пример 2

В пласт с вязкой нефтью закачивают 15 т 10%-ной суспензии глинистого бурового шлама для создания катализаторной подушки и буфер воды. После этого в скважину закачивают одновременно 600 т 30%-ного водного раствора пероксида водорода и 600 т 10%-ного водного раствора или суспензии бикарбоната натрия (в зависимости от температуры используемой воды), затем переходят на закачивание воды из системы поддержания пластового давления (ППД). Из добывающих скважин участка добывают нефть. В результате воздействия добывают 9720 т нефти. Технологическая эффективность составляет 54 т нефти на 1 т 100%-ного пероксида водорода.

Пример 3

В пласт с вязкой нефтью закачивают 20 т суспензии, содержащей 5 мас.% реагента ЖС-7 (порошок оксида трехвалентного железа) и 5 мас.% речного песка фракции менее 0,5 мм для создания в призабойной зоне пласта слоя твердого катализатора и затем буфер воды. После этого в скважину закачивают одновременно 600 т 30%-ного водного раствора пероксида водорода и 600 т 30%-ного водного раствора бикарбоната натрия. Затем закачивают воду из системы ППД. Из добывающих скважин участка добывают нефть. В результате воздействия добывают 12600 т нефти. Технологическая эффективность составляет 52,5 т нефти на 1 т 100%-ного пероксида водорода.

Пример 4

В пласт с вязкой нефтью закачивают 5 т 10%-ной суспензии глинистого бурового шлама для создания катализаторной подушки и буфер воды. После этого в скважину закачивают одновременно 200 т 30%-ного водного раствора пероксида водорода и 600 т 5%-ного водного раствора или суспензии бикарбоната натрия (в зависимости от температуры используемой воды), затем переходят на закачивание воды из системы поддержания пластового давления (ППД). Из добывающих скважин участка добывают нефть. В результате воздействия добывают 3870 т нефти. Технологическая эффективность составляет 64,5 т нефти на 1 т 100%-ного пероксида водорода.

Пример 5

В пласт с вязкой нефтью закачивают 20 т суспензии, содержащей 5 мас.% реагента ЖС-7 (порошок оксида трехвалентного железа) и 5 мас.% речного песка фракции менее 0,5 мм ,для создания в призабойной зоне пласта слоя твердого катализатора и затем буфер воды. После этого в скважину закачивают одновременно 600 т 20%-ного водного раствора пероксида водорода и 200 т 30%-ного водного раствора бикарбоната натрия. Затем закачивают воду из системы ППД. Из добывающих скважин участка добывают нефть. В результате воздействия добывают 6400 т нефти. Технологическая эффективность составляет 53,3 т нефти на 1 т 100%-ного пероксида водорода.

Таким образом, по сравнению с известным, описываемый способ имеет более высокую эффективность.

Проведение описываемого способа с использованием иных, оговоренных выше, концентраций перекиси водорода, водного раствора или суспензии бикарбоната щелочного металла и/или бикарбоната аммония, видов используемых катализаторов, а также карбоната щелочного металла приводят к аналогичным результатам.

Применение описываемого способа позволяет разрабатывать запасы вязкой и тяжелой нефти из глубокозалегающих пластов, т.е. в тех случаях, когда традиционные тепловые методы, основанные на подаче теплоносителей с поверхности, неэффективны.

Похожие патенты RU2534870C2

название год авторы номер документа
СПОСОБ ДОБЫЧИ ВЯЗКОЙ НЕФТИ 2012
  • Хлебников Вадим Николаевич
  • Зобов Павел Михайлович
  • Винокуров Владимир Арнольдович
  • Гущина Юлия Федоровна
  • Мишин Александр Сергеевич
  • Антонов Сергей Владимирович
  • Бардин Максим Евгеньевич
  • Шувалов Сергей Александрович
RU2522690C2
Способ обработки призабойной зоны пласта пероксидом водорода с флегматизацией при освоении 2023
  • Фархутдинов Ильдар Зуфарович
  • Гайфуллин Алмаз Ирекович
  • Болотов Александр Владимирович
  • Варфоломеев Михаил Алексеевич
  • Сафуанов Ринат Иолдузович
  • Судаков Владислав Анатольевич
  • Усманов Сергей Анатольевич
  • Чалин Владислав Валерьевич
RU2808778C1
Способ термогазохимической и ударно-волновой обработки нефтеносных пластов 2018
  • Межерицкий Сергей Эдуардович
  • Заволжский Виктор Борисович
  • Бурко Владимир Антонович
  • Идиятуллин Альберт Раисович
  • Ганькин Юрий Александрович
  • Соснин Александр Вячиславович
  • Идиятуллин Рафаэль Альбертович
  • Зимин Алексей Сергеевич
  • Бурко Антон Владимирович
RU2717151C1
Термогазохимический состав и способ его применения при обработке призабойной и удаленной зоны продуктивного пласта (варианты) 2022
  • Гладунов Олег Владимирович
  • Козлов Сергей Александрович
  • Фролов Дмитрий Александрович
  • Елесин Валерий Александрович
  • Гатин Ринат Асхатович
  • Латыпов Ренат Тахирович
  • Смирнов Евгений Анатольевич
  • Кожин Владимир Николаевич
  • Демин Сергей Валерьевич
  • Михайлов Андрей Валерьевич
  • Киреев Иван Иванович
  • Пчела Константин Васильевич
  • Болотов Александр Владимирович
  • Минханов Ильгиз Фаильевич
  • Аникин Олег Викторович
  • Варфоломеев Михаил Алексеевич
RU2803463C1
Способ термокислотной обработки нефтегазоносных пластов (варианты) 2017
  • Басюк Борис Николаевич
  • Бурко Владимир Антонович
  • Ганькин Юрий Александрович
  • Заволжский Виктор Борисович
  • Идиятуллин Альберт Раисович
RU2675617C1
Химический реагент для обработки призабойной зоны пласта нефтяных скважин 2021
  • Мосесян Ашот Аветисович
  • Данилина Наталья Игоревна
RU2776820C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2009
  • Заволжский Виктор Борисович
  • Бурко Владимир Антонович
  • Идиятуллин Альберт Раисович
  • Мейнцер Валерий Оттович
  • Платов Анатолий Иванович
  • Серкин Юрий Георгиевич
RU2440490C2
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ С НЕОДНОРОДНЫМИ ПО ПРОНИЦАЕМОСТИ ГЛИНОСОДЕРЖАЩИМИ ПЛАСТАМИ 1993
  • Балакин В.В.
  • Воропанов В.Е.
  • Хавкин А.Я.
  • Табакаева Л.С.
  • Путилов С.М.
RU2071553C1
Способ интенсификации добычи нефти из пласта 2022
  • Копылова Марина Михайловна
  • Назимов Нафис Анасович
  • Нургалиев Данис Карлович
  • Вахин Алексей Владимирович
RU2780194C1
Способ интенсификации добычи нефти из плотного и слабопроницаемого пласта 2022
  • Копылова Марина Михайловна
  • Назимов Нафис Анасович
  • Нургалиев Данис Карлович
  • Вахин Алексей Владимирович
  • Каюмов Айдар Асхатович
RU2782666C1

Реферат патента 2014 года СПОСОБ ДОБЫЧИ ВЯЗКОЙ НЕФТИ

Изобретение относится к нефтеперерабатывающей промышленности. Технический результат - повышение степени извлечения вязкой нефти. В способе добычи вязкой нефти предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости призабойной зоны пласта закачивают глинистый буровой шлам, содержащий глинистые частицы - катализатор разложения пероксида водорода и частицы песка, обеспечивающие проницаемость катализаторной подушки, или суспензию смеси, содержащую, мас.%: катализатор разложения пероксида водорода - порошок оксида двух- или трех-, или четырехвалентного металла 20-50, песок или пропант остальное. Затем производят закачку в пласт одновременно 10,0-50,0%-ного водного раствора пероксида водорода и 1,0-30,0%-ного водного раствора или суспензии бикарбоната щелочного металла и/или бикарбоната аммония, затем буфера воды из системы поддержания пластового давления с последующей откачкой нефти. 5 табл., 5 пр.

Формула изобретения RU 2 534 870 C2

Способ добычи вязкой нефти, заключающийся в том, что предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости призабойной зоны пласта закачивают глинистый буровой шлам, содержащий глинистые частицы - катализатор разложения пероксида водорода и частицы песка, обеспечивающие проницаемость катализаторной подушки, или суспензию смеси, содержащую, мас.%: катализатор разложения пероксида водорода - порошок оксида двух- или трех-, или четырехвалентного металла 20-50, песок или пропант остальное, после чего производят закачку в пласт одновременно 10,0-50,0%-ного водного раствора пероксида водорода и 1,0-30,0%-ного водного раствора или суспензии бикарбоната щелочного металла и/или бикарбоната аммония, затем буфера воды из системы поддержания пластового давления с последующей откачкой нефти.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534870C2

СПОСОБ ТЕРМИЧЕСКОГО ВОЗДЕЙСТВИЯ НА НЕФТЕСОДЕРЖАЩИЕ И/ИЛИ КЕРОГЕНОСОДЕРЖАЩИЕ ПЛАСТЫ С ВЫСОКОВЯЗКОЙ И ТЯЖЕЛОЙ НЕФТЬЮ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Клинков Николай Николаевич
  • Коломийченко Олег Васильевич
  • Чернов Анатолий Александрович
RU2447276C1
Способ обработки призабойной зоны 1990
  • Воропанов Виктор Егорович
  • Балакин Виктор Валентинович
  • Монастырев Владимир Андреевич
  • Павленко Александр Николаевич
  • Буланов Николай Иванович
SU1761944A1
RU 2004100605 A, 10.06.2005
СПОСОБ ДОБЫЧИ ВЫСОКОВЯЗКОЙ НЕФТИ ИЗ КАРБОНАТНЫХ КОЛЛЕКТОРОВ 2007
  • Слюсарев Николай Иванович
  • Мозер Сергей Петрович
  • Куртуков Евгений Борисович
  • Григорьева Людмила Владиславовна
  • Мухаметшин Гийдар Ринатович
RU2349743C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ 2005
  • Толстунов Сергей Андреевич
  • Мозер Сергей Петрович
  • Толстунов Антон Сергеевич
RU2278250C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ 0
  • А. Боксерман, С. А. Жданов, Ю. П. Желтое, А. А. Кочешков, Н. Л. Раковский, П. Б. Садчиков Р. Сафиуллин
SU329306A1
US 4867238 A, 19.09.1989 БЕЙЛЕС ДЖ
Х
Новая методика тепловой обработки призабойной зоны скважины с использованием перекиси водорода, Нефтегазовые технологии, 1998, N5-6, с
Устройство для устранения мешающего действия зажигательной электрической системы двигателей внутреннего сгорания на радиоприем 1922
  • Кулебакин В.С.
SU52A1
.

RU 2 534 870 C2

Авторы

Хлебников Вадим Николаевич

Винокуров Владимир Арнольдович

Зобов Павел Михайлович

Гущина Юлия Федоровна

Мишин Александр Сергеевич

Антонов Сергей Владимирович

Бардин Максим Евгеньевич

Даты

2014-12-10Публикация

2013-03-29Подача