СПОСОБ ПОЛУЧЕНИЯ ФЕРРИТОВЫХ ИЗДЕЛИЙ ПУТЕМ РАДИАЦИОННО-ТЕРМИЧЕСКОГО СПЕКАНИЯ Российский патент 2014 года по МПК B22F3/12 H01F1/10 H01F1/34 

Описание патента на изобретение RU2536022C1

Изобретение относится к порошковой металлургии и может быть использовано в электронной и радиопромышленности при производстве ферритовых материалов и изделий на их основе.

Известен способ радиационно-термической обработки (РТО) материалов, в частности изделий из ферритов и керамики, обеспечивающий спекание заготовок ферритов облучением проникающим импульсным электронным лучом (см. а.с. СССР №1391808, B22F 3/24, C04B 35/26. Авторы: Суржиков А.П., Анненков Ю.М., Новиков B.C. и др.). Недостаток - способ характеризуется большой длительностью спекания, не обеспечивает требуемое качество процесса спекания магнитомягкой ферритовой керамики, не обеспечивает требуемое качество магнитомягких ферритов.

Известен также способ получения ферритовых изделий (а.с. СССР №1627324, B22F 3/12, H01F 1/34. Авторы: Суржиков А.П., Притулов A.M., Кожемякин В.А. и др.), позволяющий снизить длительность спекания, качество спекания.

Согласно способу синтезированный ферритовый материал, содержащий лекгоплавкую добавку, формуют в заготовки, нагревают их облучением проникающим импульсным электронным пучком со скоростью 420-520 градусов в минуту до температуры плавления легкоплавкой добавки, выдерживают под облучением и при данной температуре в течение 10-20 мин, после чего продолжают радиационный разогрев заготовок до температуры спекания и выдерживают их при температуре спекания и под облучением.

Однако этот способ не уменьшает существенно время спекания при радиационно-термическом способе получения магнитомягкой ферритовой керамики, не обеспечивает требуемое качество магнитомягких ферритов.

Известны легкоплавкие добавки в виде оксида металла, использующиеся для улучшения процесса спекания ферритовой керамики (например, Bi2O3, CdO; см.: а.с. СССР №1627324, B22F 3/12, H01F 1/34. Авторы: Суржиков А.П., Притулов A.M., Кожемякин В.А. и др.). Однако данные добавки не лишены недостатков, поскольку не обеспечивают требуемое качество процесса спекания ферритовой керамики, не обеспечивают получение керамики с высокими электромагнитными характеристиками.

Цель изобретения - улучшение процесса спекания магнитомягких ферритовых материалов и изделий на их основе путем радиационно-термической обработки, а также уменьшение времени спекания при спекании методом радиационно-термической обработки, достижение характеристиками ферритов требуемых параметров.

Поставленная цель достигается тем, что предлагаемый способ получения ферритовых изделий путем радиационно-термического спекания, включающий синтез ферритового материала, введение лекгоплавкой добавки, приготовление пресс-порошка, прессование заготовок, их нагревание до температуры спекания облучением проникающим электронным пучком и выдержку при температуре спекания под облучением, осуществление изотермической выдержки в процессе нагревания в течение 10-20 мин при температуре плавления легкоплавкой добавки, отличается тем, что с целью уменьшения времени спекания магнитомягкой ферритовой керамики, использования способа для магнитомягких ферритов, а также улучшения электромагнитных характеристик последних перед введением в синтезированную шихту легкоплавкой добавки, осуществляют механоактивацию последней в планетарной мельнице в течение 25-50 минут и вводят механоактивированную легкоплавкую добавку в синтезированную шихту в количестве 0,01-0,05 мас.% от общей массы ферритовой шихты.

Механоактивация синтезированного в планетарной мельнице ферритового материала обеспечивает увеличение его активности при спекании, что повышает плотность материала после спекания и уровень электромагнитных свойств.

Примеры реализации способа

Пример 1. В синтезированные по оксидной технологии порошки марганец-цинкового феррита вводили оксид висмута с последующим приготовлением пресс-порошка с поливиниловым спиртом в качестве связки. Кольцевые заготовки К20×12×6, полученные прессованием под давлением 200 МПа, после сушки до влажности менее 0,5 мас.% подвергались РТО, путем воздействия быстрыми электронами энергии 4 МэВ, значение тока в импульсе 400 мA, частота следования импульсов 50 Гц. В процессе нагрева осуществлялась изотермическая выдержка в течение 10 мин при температуре 820°C. Минимальное время РТ-спекания определялось исходя из обеспечения плотности феррита не менее 95% от теоретической плотности.

Использовался оксид висмута Bi2O3 ГОСТ 10216-75 марки «чда» исходный, а также механоактивированный путем измельчения и механической активации порошка в шаровой планетарной мельнице АПФ-3. Время активации составляло 20, 25, 35, 50 и 75 мин. Результаты исследований показали, что механоактивация позволяет на 7% уменьшить время РТО магнитомягких ферритов до их полной готовности и повысить уровень электромагнитных свойств.

В табл.1-4 представлены результаты зависимости времени РТО, требующегося для полной готовности разработанных магнитомягких ферритов, содержащих 0,03 мас.% оксида висмута, от времени механоактивации в планетарной мельнице АПФ-3. Средний размер частиц после механоактивации оценивали на газовом хроматографе ЛХМ-8МД. Значения электромагнитных параметров получены по усредненным данным на 5 образцах.

Таблица 1 Влияние времени механоактивации t добавки Bi2O3 в планетарной мельнице АПФ-3 на процесс РТО и индукцию насыщения ферритовой керамики Mn0,603Zn0,274Fe0,124Fe2O4 (Tсп=1200°C) t, мин 0 20 25 35 50 75 Средний размер частиц Bi2O3, нм 425 362 251 194 141 139 Требующееся для полной готовности феррита минимальное время РТ-спекания, мин 125-130 118-121 110-114 105-112 108-117 110-119 Индукция насыщения в поле 240 А/м Вм, Тл 0,30 0,31 0,33 0,34 0,34 0,32 Примечание Прототип Выход за пределы Согласно изобретению Согласно изобретению Согласно изобретению Выход за пределы

Таблица 2 Влияние времени механоактивации t добавки Bi2O3 в планетарной мельнице АПФ-3 на процесс РТО и начальную магнитную проницаемость ферритовой керамики Mn0,743Zn0,219Fe0,038Fe2O4 (Tсп=1200°C) t, мин 0 20 25 35 50 75 Средний размер частиц Bi2O3, нм 425 362 251 194 141 139 Требующееся для полной готовности феррита минимальное время РТ-спекания, мин 120-130 118-126 111-116 105-112 108-115 112-117 Начальная магнитная проницаемость, µ 1962 1996 2014 2211 2204 2103 Примечание Прототип Выход за пределы Согласно изобретению Согласно изобретению Согласно изобретению Выход за пределы

Таблица 3 Влияние времени механоактивации t добавки Bi2O3 в планетарной мельнице АПФ-3 на процесс РТО и начальную магнитную проницаемость ферритовой керамики Ni0,29Zn0,63Fe2,08O4 (Tсп=1200°C) t, мин 0 20 25 35 50 75 Средний размер частиц Bi2O3, нм 425 362 251 194 141 139 Требующееся для полной готовности феррита минимальное время РТ-спекания, мин 115-119 112-116 108-111 101-104 105-108 109-112 Начальная магнитная проницаемость, µ 1843 1915 2001 2101 2084 1993 Примечание Прототип Выход за пределы Согласно изобретению Согласно изобретению Согласно изобретению Выход за пределы

Таблица 4 Влияние времени механоактивации t добавки Bi2O3 в планетарной мельнице АПФ-3 на процесс РТО и начальную магнитную проницаемость ферритовой керамики Mg0,404Mn0,160Zn0,448Fe2O4 (Tсп=1200°C) t, мин 0 20 25 35 50 75 Средний размер частиц Bi2O3, нм 425 362 251 194 141 139 Требующееся для полной готовности феррита минимальное время РТ-спекания, мин 110-114 108-111 107-109 97-100 102-105 106-108 Начальная магнитная проницаемость, µ 578 596 614 627 621 599 Примечание Прототип Выход за пределы Согласно изобретению Согласно изобретению Согласно изобретению Выход за пределы

Как видно из представленных в табл.1-4 данных, наилучшие результаты для РТО и уровень параметров магнитомягкой ферритовой керамики оказывает оксид Bi2O3 (как легирующая добавка) после проведения механоактивации на планетарной мельнице АПФ-3 в течение 35 минут. При выходе за предел изобретения менее 25 минут время РТО заметно возрастает, а увеличение времени обработки более 50 минут не приводит к заметному изменению параметров спекания. Механизм улучшения процесса спекания ферритовой керамики в присутствии оксида Bi2O3 состоит в следующем. Оксид висмута является легкоплавкой добавкой и плавится уже при температуре немного выше 800°C. При этом имеет место процесс спекания феррита с участием жидкой фазы. С участием жидкой фазы процесс спекания проходит интенсивнее. Процесс механоактивации и наноразмерное состояние снижают температуру плавления оксида висмута, увеличивают площадь контакта и химическую активность участников реакции в процессе спекания, обеспечивают увеличение уровня электромагнитных свойств.

Пример 2. В синтезированные по оксидной технологии порошки марганец-цинкового феррита, вводили оксид висмута, с последующим приготовлением пресс-порошка с поливиниловым спиртом в качестве связки. Кольцевые заготовки К20×12×6, полученные прессованием под давлением 200 МПа, после сушки до влажности менее 0,5 мас.% подвергались РТО, путем воздействия быстрыми электронами энергии 6 МэВ, значение тока в импульсе 500 mA, частота следования импульсов 250 Гц. В процессе нагрева осуществлялась изотермическая выдержка в течение 20 мин при температуре 820°C. Минимальное время РТ-спекания определялось исходя из обеспечения плотности феррита не менее 95% от теоретической плотности.

Использовался оксид висмута Bi2O3 ГОСТ 10216-75 марки «чда» исходный, а также механоактивированный путем измельчения и механической активации порошка в шаровой планетарной мельнице АПФ-3. Время активации составляло 35 мин. Результаты исследований показали, что использование способа позволяет на 12% уменьшить время РТО магнитомягких ферритов до их полной готовности, повысить уровень электромагнитных свойств.

В табл.5-8 представлены результаты зависимости времени РТО, требующегося для полной готовности разработанных магнитомягких ферритов, содержащих механоактивированный оксид висмута, от его количества. Значения электромагнитных параметров получены по усредненным данным на 5 образцах.

Таблица 5 Влияние количества механоактивированной в планетарной мельнице АПФ-3 добавки Bi2O3 на процесс РТО и индукцию насыщения ферритовой керамики Mn0,603Zn0,274Fe0,124Fe2O4 (Tсп=1200°C) Содержание Bi2O3, мас.% 0 0,008 0,01 0,03 0,05 0,06 Требующееся для полной готовности феррита минимальное время РТ-спекания, мин 125-130 117-120 110-113 105-112 105-111 107-111 Индукция насыщения в поле 240 А/м Вм, Тл 0,30 0,32 0,33 0,34 0,33 0,32 Примечание Прототип Выход за пределы Согласно изобретению Согласно изобретению Согласно изобретению Выход за пределы

Таблица 6 Влияние количества механоактивированной в планетарной мельнице АПФ-3 добавки Bi2O3 на процесс РТО и начальную магнитную проницаемость ферритовой керамики Mn0,743Zn0,219Fe0,038Fe2O4 (Tсп=1200°C) Содержание Bi2O3, мас.% 0 0,008 0,01 0,03 0,05 0,06 Требующееся для полной готовности феррита минимальное время РТ-спекания, мин 120-130 117-124 110-114 105-112 105-114 106-114 Начальная магнитная проницаемость, µ 1962 1990 2006 2211 2207 2090 Примечание Прототип Выход за пределы Согласно изобретению Согласно изобретению Согласно изобретению Выход за пределы

Таблица 7 Влияние количества механоактивированной в планетарной мельнице АПФ-3 добавки Bi2O3 на процесс РТО и начальную магнитную проницаемость ферритовой керамики Ni0,29Zn0,63Fe2,08O4 (Tсп=1200°C) Содержание Bi2O3, мас.% 0 0,008 0,01 0,03 0,05 0,06 Требующееся для полной готовности феррита минимальное время РТ-спекания, мин 115-119 110-114 106-110 101-104 101-104 101-105 Начальная магнитная проницаемость, µ 1843 1919 2012 2101 2087 1998 Примечание Прототип Выход за пределы Согласно изобретению Согласно изобретению Согласно изобретению Выход за пределы

Таблица 8 Влияние количества механоактивированной в планетарной мельнице АПФ-3 добавки Bi2O3 на процесс РТО и начальную магнитную проницаемость ферритовой керамики Mg0,404Mn0,160Zn0,448Fe2O4 (Tсп=1200°C) Содержание Bi2O3, мас.% 0 0,008 0,01 0,03 0,05 0,06 Требующееся для полной готовности феррита минимальное время РТ-спекания, мин 110-114 106-110 99-104 97-100 97-100 97-101 Начальная магнитная проницаемость, µ 578 598 618 627 620 591 Примечание Прототип Выход за пределы Согласно изобретению Согласно изобретению Согласно изобретению Выход за пределы

Как видно из представленных в табл.5-8 данных, наилучшие результаты для РТО магнитомягкой ферритовой керамики демонстрирует при введении механоактивированного оксида Bi2O3 (как легирующая добавка) в количестве 0,03 мас.% При выходе за предел изобретения менее 0,008 мас.% время РТО заметно возрастает, а увеличение содержания более 0,05% не приводит к заметному изменению параметров спекания, но может снизить уровень электромагнитных параметров. Процесс механоактивации и наноразмерное состояние снижают температуру плавления оксида висмута, увеличивают площадь контакта и химическую активность участников реакции в процессе спекания, что обеспечивает повышение уровня электромагнитных свойств.

Похожие патенты RU2536022C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ФЕРРИТОВЫХ ИЗДЕЛИЙ 2013
  • Костишин Владимир Григорьевич
  • Панина Лариса Владимировна
  • Андреев Валерий Георгиевич
  • Савченко Александр Григорьевич
  • Канева Ирина Ивановна
  • Комлев Александр Сергеевич
  • Николаев Алексей Николаевич
RU2548345C1
Способ получения ферритовых изделий 2016
  • Исаев Игорь Магомедович
  • Костишин Владимир Григорьевич
  • Щербаков Сергей Владиленович
  • Налогин Алексей Григорьевич
  • Коровушкин Владимир Васильевич
RU2664745C2
СПОСОБ ИЗГОТОВЛЕНИЯ СЕГНЕТОЭЛЕКТРИЧЕСКОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ ФЕРРИТА ВИСМУТА 2014
  • Резниченко Лариса Андреевна
  • Вербенко Илья Александрович
  • Миллер Александр Иванович
  • Титов Сергей Валерьевич
  • Абубакаров Абу Геланиевич
RU2580114C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИТИЙ-ЦИНК-МАРГАНЦЕВОЙ ФЕРРИТОВОЙ КЕРАМИКИ 2023
  • Мартинсон Кирилл Дмитриевич
  • Сахно Дарья Дмитриевна
  • Беляк Владислав Евгеньевич
  • Беляева Ирина Дмитриевна
  • Беляева Анна Дмитриевна
RU2817713C1
СПОСОБ СПЕКАНИЯ РАДИОПОГЛОЩАЮЩИХ МАГНИЙ-ЦИНКОВЫХ ФЕРРИТОВ 2013
  • Костишин Владимир Григорьевич
  • Панина Лариса Владимировна
  • Андреев Валерий Георгиевич
  • Морченко Александр Тимофеевич
  • Адамцов Артём Юрьевич
  • Комлев Александр Сергеевич
RU2537344C1
СПОСОБ СПЕКАНИЯ РАДИОПОГЛАЩАЮЩИХ МАГНИЙ-ЦИНКОВЫХ ФЕРРИТОВ 2013
  • Костишин Владимир Григорьевич
  • Кожитов Лев Васильевич
  • Андреев Валерий Георгиевич
  • Савченко Александр Григорьевич
  • Комлев Александр Сергеевич
RU2536151C1
Получение керамики феррита висмута с высоким содержанием стехиометрического состава 2023
  • Палчаев Даир Каирович
  • Шапиев Гусейн Шапиевич
  • Рабаданов Муртазали Хулатаевич
  • Буш Александр Андреевич
  • Мурлиева Жарият Хаджиевна
  • Алиханов Нариман Магомед-Расулович
  • Гаджимагомедов Султанахмед Ханахмедович
  • Эмиров Руслан Мурадович
RU2816609C1
ПИГМЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2001
  • Кузьмина В.П.
  • Тропилло А.В.
  • Масол Игорь Витальевич
  • Савкина С.А.
RU2205849C1
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОСТРУКТУРИРОВАННОГО ПОРОШКА ЛИТИЙ-ЦИНК-МАРГАНЦЕВОГО ФЕРРИТА 2021
  • Мартинсон Кирилл Дмитриевич
  • Иванов Андрей Александрович
  • Пантелеев Игорь Борисович
  • Попков Вадим Игоревич
RU2768724C1
СЕГНЕТОЭЛЕКТРИЧЕСКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ 2014
  • Резниченко Лариса Андреевна
  • Вербенко Илья Александрович
  • Миллер Александр Иванович
  • Титов Сергей Валерьевич
  • Абубакаров Абу Геланиевич
RU2580117C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ ФЕРРИТОВЫХ ИЗДЕЛИЙ ПУТЕМ РАДИАЦИОННО-ТЕРМИЧЕСКОГО СПЕКАНИЯ

Изобретение относится к порошковой металлургии, в частности к получению магнитомягких ферритовых материалов. Может использоваться в электронной и радиопромышленности. Готовят шихту из синтезированного ферритового материала и 0,01-0,05 мас.% легкоплавкой добавки, предварительно механоактивированной в планетарной мельнице в течение 25-50 минут. Из полученного пресс-порошка прессуют заготовки, нагревают до температуры спекания облучением проникающим электронным пучком и осуществляют выдержку при температуре спекания под облучением. В процессе нагрева осуществляют изотермическую выдержку в течение 10-20 мин при температуре плавления легкоплавкой добавки. Обеспечивается уменьшение времени спекания, а также улучшение электромагнитных характеристик ферритов. 8 табл., 1 пр.

Формула изобретения RU 2 536 022 C1

Способ получения ферритовых изделий путем радиационно-термического спекания, включающий синтез ферритового материала, введение легкоплавкой добавки в виде оксида висмута Bi2O3, приготовление пресс-порошка, прессование заготовок, их нагревание до температуры спекания облучением проникающим электронным пучком и выдержку при температуре спекания под облучением, осуществление изотермической выдержки в процессе нагревания в течение 10-20 мин при температуре плавления легкоплавкой добавки, отличающийся тем, что перед введением в синтезированную шихту легкоплавкой добавки осуществляют ее механоактивацию в планетарной мельнице в течение 25-50 минут и вводят механоактивированную легкоплавкую добавку в шихту в количестве 0,01-0,05 мас.% от общей массы ферритовой шихты.

Документы, цитированные в отчете о поиске Патент 2014 года RU2536022C1

Способ получения ферритовых изделий 1988
  • Суржиков Анатолий Петрович
  • Притулов Александр Михайлович
  • Кожемякин Владимир Алексеевич
  • Афанасьев Юрий Николаевич
  • Воронин Александр Петрович
SU1627324A1
СПОСОБ ИЗГОТОВЛЕНИЯ ФЕРРИТОВЫХ ИЗДЕЛИЙ 1991
  • Суржиков А.П.
  • Шумилов Н.Ю.
  • Мойзес Б.Б.
  • Притулов А.М.
RU2018988C1
Способ изготовления ферритов 1990
  • Салдугей Анатолий Маркович
  • Ткаченко Вячеслав Андреевич
  • Чернов Александр Сергеевич
SU1770078A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
CN 102231312 A, 02.11.2011

RU 2 536 022 C1

Авторы

Костишин Владимир Григорьевич

Кожитов Лев Васильевич

Андреев Валерий Георгиевич

Морченко Александр Тимофеевич

Читанов Денис Николаевич

Адамцов Артём Юрьевич

Комлев Александр Сергеевич

Даты

2014-12-20Публикация

2013-09-26Подача