СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2015 года по МПК F25J1/00 

Описание патента на изобретение RU2538192C1

Группа изобретений относится к области сжижения газов и их смесей и может быть использована при переработке природного газа.

Из уровня техники известен способ сжижения газа на шельфе или побережье арктических морей (патент России №2344359, кл. F25J 1/00, опубл. 20.01.2009). Способ реализуется на установке, состоящей из двух контуров: контура очистки газа от примесей, выделения из него тяжелых углеводородов, азота и сжижения природного газа и контура циркуляции хладагента, в котором поток хладагента после сжатия и охлаждения разделяют в узле деления на два потока в соотношениях от 1:19 до 1:33. Больший поток хладагента направляют на охлаждение в теплообменник, а меньший - через дроссельный вентиль в куб отпарной колонны, затем оба потока хладагента, после выравнивания давлений в них, смешивают. Недостаток известного способа состоит в том, что он обладает высокими энергетическими затратами.

Наиболее близкими техническими решениями, принятыми заявителем в качестве прототипа, являются способ сжижения газа и установка для его осуществления (патент России №2344360, кл. F25J 1/00, опубл. 20.01.2009). Известный способ реализуется на установке, состоящей из двух контуров: контура очистки газа от примесей, выделения из него тяжелых углеводородов, азота и сжижения природного газа и контура циркуляции хладагента, в котором поток хладагента после сжатия и охлаждения разделяют в узле деления на два потока в соотношениях от 1:19 до 1:33. Больший поток хладагента направляют на охлаждение в теплообменник, а меньший - через дроссельный вентиль в куб отпарной колонны, затем оба потока хладагента, после выравнивания давлений в них, смешивают. Установка для сжижения природного газа включает контур очистки газа от примесей, выделения из него тяжелых углеводородов и азота и сжижения природного газа, а также контур циркуляции хладагента. Узел деления сжижаемого газа выполнен с двумя выходами, к которым подключены первая и вторая линии сжижаемого газа, которые объединяются в узле смешения потоков сжижаемого газа. Первая линия сжижаемого газа проходит через первый теплообменник, а вторая линия сжижаемого газа - через второй теплообменник. Обе линии содержат вентили и измерители давления, обеспечивающие выравнивание давлений сжижаемого газа в первой и второй линиях перед их объединением в узле смешения потоков сжижаемого газа, выход которого соединен с первым сепаратором, верхняя часть которого соединена с отпарной колонной третьей линией сжижаемого газа, проходящей через первый теплообменник. Верхняя часть отпарной колонны соединена трубопроводом со вторым теплообменником, а нижняя часть отпарной колонны соединена четвертой линией сжижаемого газа, проходящей через теплообменник-переохладитель. Контур циркуляции хладагента включает узел деления сжатого хладагента с двумя выходами, к которым подключены первая и вторая линии хладагента, объединяющиеся в первом узле смешения потоков хладагента. Первая линия хладагента проходит через третий теплообменник, а вторая линия - через третий дроссельный вентиль и куб отпарной колонны. Обе линии содержат вентили и измерители давления, обеспечивающие выравнивание давлений хладагента в первой и второй линиях перед их объединением в первом узле смешения потоков хладагента. Использование известных способа и установки приводит к высоким энергетическим затратам.

Технический результат, достигаемый группой изобретений, заключается в снижении энергетических затрат, необходимых для выполнения процесса сжижения газа.

Технологическая схема сжижения природного газа представлена на чертеже.

Сущность способа сжижения газа заключается в том, что предварительно очищенный и осушенный природный газ охлаждают и конденсируют в теплообменнике предварительного охлаждения до температуры минус 52-54°С, затем сепарируют, отделяя жидкую этановую фракцию, которую направляют на фракционирование, а газовый поток с первого сепаратора последовательно охлаждают в теплообменнике сжижения до температуры минус 120-125°С, переохлаждают газообразным азотом в теплообменнике переохлаждения до температуры минус 150-160°С. Давление переохлажденного сжиженного природного газа (СПГ) снижают в жидкостном детандере до 0,11-0,13 МПа. Переохлажденный СПГ направляют на сепарирование, после чего сжижаемый газ направляют в емкость хранения СПГ. Отсепарированный газ направляют в систему топливного газа, смешанный хладагент, состоящий из азота, метана, этана, пропана, бутана и пентана из теплообменника предварительного охлаждения компримируют до давления от 3,0 до 3,1 МПа, охлаждая до температуры 26-30°С, и разделяют в сепараторах на потоки тяжелого жидкого хладагента и легкого газообразного смешанного хладагента. Причем потоки тяжелого жидкого хладагента подают насосами для смешения с тяжелым жидким хладагентом из последнего сепаратора, потоки тяжелого жидкого смешанного хладагента и легкого газообразного смешанного хладагента направляют для охлаждения до температуры минус 52-54°С за счет подачи обратного смешанного потока низкого давления тяжелого и легкого смешанного хладагента. Затем тяжелый жидкий смешанный хладагент переохлаждают в теплообменнике предварительного охлаждения, дросселируют до давления 0,25-0,27 МПа и подают вместе с легким смешанным хладагентом, направленным из теплообменника сжижения, для охлаждения трубных потоков теплообменника предварительного охлаждения. Легкий смешанный хладагент конденсируют и последовательно переохлаждают в теплообменнике предварительного охлаждения и теплообменнике сжижения. Переохлажденный сжиженный легкий смешанный хладагент, полученный на выходе теплообменника сжижения, направляют на дросселирование до давления 0,25-0,27 МПа и далее на охлаждение его трубных потоков. Газообразный азот низкого давления из теплообменника азотного цикла последовательно компримируют в компрессоре турбодетандера до давления 1,2-1,4 МПа и в компрессорах азотного цикла до давления 3,5-3,7 МПа, охлаждают в воздушных охладителях до температуры 26-30°С, и в теплообменнике азотного цикла до температуры минус 107-109°С за счет обратного потока азотного хладагента низкого давления, затем азот расширяют до давления 0,8-1,0 МПа и направляют для переохлаждения потока СПГ в теплообменник переохлаждения, затем рекуперативно нагревают в теплообменнике азотного цикла до температуры 22-24°С потоком азота высокого давления и возвращают на всас компрессора турбодетандерного агрегата.

Сущность установки для осуществления способа сжижения газа заключается в том, что она содержит теплообменник предварительного охлаждения, пять сепараторов, два дросселя, теплообменник сжижения, три компрессора, предназначенных для сжатия смешанного хладагента, пять воздушных охладителей, два насоса, жидкостный детандер, теплообменник переохлаждения, турбодетандерный агрегат, включающий детандер и компрессор, два компрессора азотного цикла. В установке вход теплообменника предварительного охлаждения предназначен для подачи природного газа. Первый выход теплообменника предварительного охлаждения соединен с входом первого сепаратора, выход газового потока которого соединен с первым входом теплообменника сжижения, первый выход которого соединен с входом теплообменника переохлаждения, первый выход которого соединен через жидкостной детандер с входом второго сепаратора, выход отсепарированного газа которого предназначен для передачи в систему топливного газа. Выход сжиженного газа второго сепаратора соединен с емкостью хранения сжиженного природного газа (СПГ), выход жидкой этановой фракции первого сепаратора соединен с входом блока фракционирования. Выход смешанного хладагента теплообменника предварительного охлаждения соединен с входом первого компрессора, выход которого соединен с входом воздушного охладителя, последовательно соединенного с входом сепаратора, предназначенного для разделения на потоки тяжелого жидкого хладагента и легкого газообразного смешанного хладагента. Упомянутые первый компрессор, воздушный охладитель и сепаратор образуют первую ступень, по крайней мере, трехступенчатого компрессора, все ступени которого идентичны. Выход легкого газообразного смешанного хладагента сепаратора i-й ступени (где i=1,2) соединен с входом компрессора (i+1)-й ступени трехступенчатого компрессора, выход легкого газообразного смешанного хладагента сепаратора последней ступени соединен со вторым входом теплообменника предварительного охлаждения. Выходы потоков тяжелого жидкого хладагента сепараторов первой и второй ступени через первый и второй насосы соответственно объединены с выходом потока тяжелого жидкого хладагента сепаратора третьей ступени для подачи на третий вход теплообменника предварительного охлаждения. Второй выход теплообменника предварительного охлаждения соединен со вторым входом теплообменника сжижения, второй выход которого через второй дроссель соединен с входом теплообменника сжижения, предназначенным для охлаждения его трубных потоков. Третий выход теплообменника предварительного охлаждения через первый дроссель объединен с третьим выходом теплообменника сжижения для подачи в межтрубное пространство теплообменника предварительного охлаждения для охлаждения его трубных потоков. Второй выход теплообменника переохлаждения соединен с входом теплообменника азотного цикла, первым и вторым выходами соединенного с входами соответственно детандера и компрессора турбодетандерного агрегата, выходы которых соединены с входами передачи холода потоку СПГ теплообменника переохлаждения и второго компрессора азотного цикла соответственно, выход последнего из которых соединен с последовательно соединенными пятым воздушным охладителем, первым компрессором азотного цикла и четвертым воздушным охладителем, выход которого предназначен для подачи потока азота высокого давления на другой вход теплообменника азотного цикла.

Установка сжижения природного газа, на которой реализуется способ сжижения природного газа, включает в себя два контура:

- контур смешанного хладагента;

- контур азотного хладагента.

В состав установки, предназначенной для осуществления способа сжижения природного газа, входят следующие элементы и блоки:

- теплообменник предварительного охлаждения - 1;

- с первого по пятый сепараторы - 2, 20, 8, 11, 14;

- первый и второй дроссели - 3, 5;

- теплообменник сжижения - 4;

- с первого по третий компрессоры - 6, 9, 12, предназначенные для сжатия смешанного хладагента;

- с первого по пятый воздушные охладители - 7, 10, 13, 23, 25;

- первый и второй насосы - 15, 16;

- жидкостной детандер 19;

- теплообменник переохлаждения - 17;

- теплообменник азотного цикла - 18;

- турбодетандерный агрегат, включающий детандер 21 и компрессор - 22;

- два компрессора азотного цикла - 24, 26;

- блок фракционирования - 27;

- емкость хранения СПГ - 28.

Предварительно очищенный и осушенный природный газ подают на сжижение и затем охлаждают за счет холода смешанного хладагента в теплообменнике предварительного охлаждения 1 до температуры минус 52-54°С. Двухфазный поток проходит через первый сепаратор 2, где происходит отделение этановой фракции, после чего жидкость из первого сепаратора направляют на фракционирование. Газовый поток направляют в теплообменник сжижения 4 и охлаждают до температуры минус 120-125°С.

Далее сжиженный природный газ (СПГ) переохлаждают в теплообменнике переохлаждения 17 азотом до температуры минус 150-160°С.

Давление переохлажденного СПГ, выходящего из теплообменника переохлаждения 17, снижают в жидкостном детандере 19 до 0,11-0,13 МПа. СПГ низкого давления поступает в сепаратор 20, и затем его направляют в емкость хранения СПГ.

Применение жидкостного детандера 19 позволяет сэкономить количество энергии, затрачиваемой на процесс сжижения, за счет использования энергии расширения сжиженного газа.

Контур смешанного хладагента

Смешанный хладагент состоит из азота, метана, этана, пропана, бутана и пентана.

Смешанный хладагент компримируют в компрессорах 6, 9, 12 до давления 3,0-3,1 МПа. Между ступенями сжатия его охлаждают в воздушных охладителях (7, 10, 13) до температуры 26-30°С. Двухфазные потоки подают в сепараторы 8, 11, 14 смешанного хладагента для разделения на поток «тяжелого жидкого смешанного хладагента» и поток «легкого газообразного смешанного хладагента». При этом потоки «тяжелого жидкого смешанного хладагента» из сепараторов 8 и 11 подают насосами 15, 16 для смешения с жидкостью из сепаратора 14. Состав и количество «тяжелого жидкого смешанного хладагента» по ступеням зависит от состава смешанного хладагента, который выбирают таким образом, чтобы обеспечить наименьшие затраты при сжижении природного газа в зависимости от температуры окружающей среды.

Потоки тяжелого и легкого смешанного хладагента охлаждают в теплообменнике 1 до температуры минус 52-54°С за счет обратного потока тяжелого и легкого смешанного хладагента низкого давления.

Тяжелый смешанный хладагент переохлаждают в теплообменнике 1 и дросселируют на дросселе 3 до давления 0,25-0,27 МПа в межтрубное пространство теплообменника 1, куда поступает также легкий смешанный хладагент из теплообменника сжижения 4 для охлаждения трубных потоков теплообменника 1.

Легкий смешанный хладагент конденсируют и переохлаждают в теплообменниках 1 и 4. Затем переохлажденный сжиженный легкий смешанный хладагент дросселируют на дросселе 5 до давления 0,25-0,27 МПа в межтрубное пространство теплообменника сжижения 4 и охлаждают трубные потоки теплообменника сжижения 4.

Потоки тяжелого и легкого смешанного хладагента низкого давления объединяют и возвращают в межтрубное пространство теплообменника 1 для охлаждения его трубных потоков.

Смешанный хладагент низкого давления выходит из теплообменника 1 в виде пара с температурой 20-25°С, который направляют для прохождения нового цикла циркуляции хладагента.

Смешанный хладагент используют для охлаждения потока газа до температуры минус 120-125°С.

Контур азотного хладагента

Газообразный азот низкого давления компримируют в компрессоре 22 турбодетандерного агрегата с приводом от детандера 21 до давления 1,2-1,4 МПа и в компрессорах азотного цикла 24, 26, до давления 3,5-3,7 МПа, охлаждают в воздушных охладителях 23, 25 до температуры 26-30°С и в теплообменнике азотного цикла 18 до температуры минус 107-109°С за счет обратного потока азотного цикла низкого давления.

Далее азот расширяют в детандере 21 до давления 0,8-1,0 МПа, и он отдает свой холод потоку СПГ в теплообменнике переохлаждения 17, затем рекуперативно нагревают в теплообменнике азотного цикла 18 до температуры 22-24°С потоком азота высокого давления и возвращают на всас компрессора 22.

Снижение энергетических показателей, затрачиваемых на процесс сжижения газа, достигается за счет использования смешанного хладагента на стадии предварительного охлаждения и сжижения и азотного цикла на стадии переохлаждения.

Похожие патенты RU2538192C1

название год авторы номер документа
Способ сжижения природного газа 2022
  • Гасанова Олеся Игоревна
  • Мифтахов Динар Ильдусович
RU2803363C1
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА ПО ЦИКЛУ ВЫСОКОГО ДАВЛЕНИЯ С ПРЕДОХЛАЖДЕНИЕМ ЭТАНОМ И ПЕРЕОХЛАЖДЕНИЕМ АЗОТОМ "АРКТИЧЕСКИЙ КАСКАД" И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Минигулов Рафаиль Минигулович
  • Руденко Сергей Владимирович
  • Васин Олег Евгеньевич
  • Грицишин Дмитрий Николаевич
  • Соболев Евгений Игоревич
RU2645185C1
Способ сжижения природного газа на газораспределительной станции и установка для его осуществления 2017
  • Белоусов Юрий Васильевич
RU2656068C1
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА "АРКТИЧЕСКИЙ КАСКАД МОДИФИЦИРОВАННЫЙ" И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2022
  • Руденко Сергей Владимирович
  • Федосеев Павел Олегович
  • Нозиков Никита Дмитриевич
  • Трифонова Анастасия Геннадьевна
  • Разяпов Тимир Эмильевич
  • Цепков Алексей Иванович
  • Седавных Дмитрий Николаевич
  • Радаев Игорь Андреевич
RU2792387C1
Способ сжижения природного газа "Полярная звезда" и установка для его осуществления 2020
  • Руденко Сергей Владимирович
  • Нозиков Никита Дмитриевич
  • Федосеев Павел Олегович
RU2740112C1
СЖИЖЕНИЕ ОБОГАЩЕННОЙ УГЛЕВОДОРОДАМИ ФРАКЦИИ 2015
  • Бауэр Хайнц
RU2698862C2
Способ сжижения природного газа 2023
  • Мнушкин Игорь Анатольевич
  • Ерохин Евгений Викторович
RU2811216C1
УЛУЧШЕННЫЙ СПОСОБ И СИСТЕМА ОХЛАЖДЕНИЯ УГЛЕВОДОРОДНОГО ПОТОКА С ПРИМЕНЕНИЕМ ХЛАДАГЕНТА В ГАЗОВОЙ ФАЗЕ 2019
  • Кришнамурти, Говри
  • Робертс, Марк, Джулиан
RU2727500C1
СПОСОБ ПРОИЗВОДСТВА СЖИЖЕННОГО ПРИРОДНОГО ГАЗА И КОМПЛЕКС ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Гайдт Давид Давидович
  • Мишин Олег Леонидович
RU2541360C1
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2020
  • Руденко Сергей Владимирович
  • Нозиков Никита Дмитриевич
  • Федосеев Павел Олегович
RU2735977C1

Иллюстрации к изобретению RU 2 538 192 C1

Реферат патента 2015 года СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Способ сжижения газа, заключающийся в том, что предварительно очищенный и осушенный природный газ охлаждают и конденсируют в теплообменнике предварительного охлаждения, затем сепарируют, отделяя жидкую этановую фракцию, которую направляют на фракционирование, а газовый поток с первого сепаратора последовательно охлаждают в теплообменнике сжижения, используя смешанный хладагент, переохлаждают газообразным азотом в теплообменнике переохлаждения, давление переохлажденного СПГ снижают в жидкостном детандере, и переохлажденный СПГ направляют на сепарирование, после чего сжижаемый газ направляют в емкость хранения СПГ, отсепарированный газ направляют в систему топливного газа. Установка для сжижения газа содержит теплообменник предварительного охлаждения, пять сепараторов, два дросселя, теплообменник сжижения, три компрессора, предназначенных для сжатия смешанного хладагента, пять воздушных охладителей, два насоса, жидкостный детандер, теплообменник переохлаждения, турбодетандерный агрегат, включающий детандер и компрессор, два компрессора азотного цикла. Технический результат, достигаемый группой изобретений, заключается в снижении энергетических затрат, необходимых для выполнения процесса сжижения газа. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 538 192 C1

1. Способ сжижения газа, заключающийся в том, что предварительно очищенный и осушенный природный газ охлаждают и конденсируют в теплообменнике предварительного охлаждения до температуры минус 52-54°C, затем сепарируют, отделяя жидкую этановую фракцию, которую направляют на фракционирование, а газовый поток с первого сепаратора последовательно охлаждают в теплообменнике сжижения до температуры минус 120-125°C, переохлаждают газообразным азотом в теплообменнике переохлаждения до температуры минус 150-160°C, давление переохлажденного сжиженного природного газа (СПГ) снижают в жидкостном детандере до 0,11-0,13 МПа, и переохлажденный СПГ направляют на сепарирование, после чего сжижаемый газ направляют в емкость хранения СПГ, отсепарированный газ направляют в систему топливного газа, смешанный хладагент, состоящий из азота, метана, этана, пропана, бутана и пентана, из теплообменника предварительного охлаждения компримируют до давления от 3,0 до 3,1 МПа, охлаждая до температуры 26-30°C и разделяют в сепараторах на потоки тяжелого жидкого хладагента и легкого газообразного смешанного хладагента, причем потоки тяжелого жидкого хладагента подают насосами для смешения с тяжелым жидким хладагентом из последнего сепаратора, потоки тяжелого жидкого смешанного хладагента и легкого газообразного смешанного хладагента направляют для охлаждения до температуры минус 52-54°C за счет подачи обратного смешанного потока низкого давления тяжелого и легкого смешанного хладагента, затем тяжелый жидкий смешанный хладагент переохлаждают в теплообменнике предварительного охлаждения, дросселируют до давления 0,25-0,27 МПа и подают вместе с легким смешанным хладагентом, направленным из теплообменника сжижения, для охлаждения трубных потоков теплообменника предварительного охлаждения, легкий смешанный хладагент конденсируют и последовательно переохлаждают в теплообменнике предварительного охлаждения и теплообменнике сжижения, переохлажденный сжиженный легкий смешанный хладагент, полученный на выходе теплообменника сжижения, направляют на дросселирование до давления 0,25-0,27 МПа и далее на охлаждение его трубных потоков, газообразный азот низкого давления из теплообменника азотного цикла последовательно компримируют в компрессоре турбодетандера до давления 1,2-1,4 МПа и в компрессорах азотного цикла до давления 3,5-3,7 МПа, охлаждают в воздушных охладителях до температуры 26-30°C, и в теплообменнике азотного цикла до температуры минус 107-109°C за счет обратного потока азотного хладагента низкого давления, затем азот расширяют до давления 0,8-1,0 МПа и направляют для переохлаждения потока СПГ в теплообменник переохлаждения, затем рекуперативно нагревают в теплообменнике азотного цикла до температуры 22-24°C потоком азота высокого давления и возвращают на всас компрессора турбодетандерного агрегата.

2. Установка для осуществления способа по п.1, характеризующаяся тем, что она содержит теплообменник предварительного охлаждения, пять сепараторов, два дросселя, теплообменник сжижения, три компрессора, предназначенных для сжатия смешанного хладагента, пять воздушных охладителей, два насоса, жидкостный детандер, теплообменник переохлаждения, турбодетандерный агрегат, включающий детандер и компрессор, два компрессора азотного цикла, вход теплообменника предварительного охлаждения предназначен для подачи природного газа, первый выход которого соединен с входом первого сепаратора, выход газового потока которого соединен с первым входом теплообменника сжижения, первый выход которого соединен с входом теплообменника переохлаждения, первый выход которого соединен через жидкостный детандер с входом второго сепаратора, выход отсепарированного газа которого предназначен для передачи в систему топливного газа, а выход сжиженного газа второго сепаратора соединен с емкостью хранения сжиженного природного газа (СПГ), выход жидкой этановой фракции первого сепаратора соединен с входом блока фракционирования, выход смешанного хладагента теплообменника предварительного охлаждения соединен с входом первого компрессора, выход которого соединен с входом воздушного охладителя, последовательно соединенного с входом сепаратора, предназначенного для разделения на потоки тяжелого жидкого хладагента и легкого газообразного смешанного хладагента, причем упомянутые первый компрессор, воздушный охладитель и сепаратор образуют первую ступень, по крайней мере, трехступенчатого компрессора, все ступени которого идентичны, при этом выход легкого газообразного смешанного хладагента сепаратора i-й ступени (где i=1, 2) соединен с входом компрессора (i+1)-й ступени трехступенчатого компрессора, выход легкого газообразного смешанного хладагента сепаратора последней ступени соединен со вторым входом теплообменника предварительного охлаждения, выходы потоков тяжелого жидкого хладагента сепараторов первой и второй ступени через первый и второй насосы соответственно объединены с выходом потока тяжелого жидкого хладагента сепаратора третьей ступени для подачи на третий вход теплообменника предварительного охлаждения, второй выход которого соединен со вторым входом теплообменника сжижения, второй выход которого через второй дроссель соединен с входом теплообменника сжижения, предназначенным для охлаждения его трубных потоков, третий выход теплообменника предварительного охлаждения через первый дроссель объединен с третьим выходом теплообменника сжижения для подачи в межтрубное пространство теплообменника предварительного охлаждения для охлаждения его трубных потоков, второй выход теплообменника переохлаждения соединен с входом теплообменника азотного цикла, первым и вторым выходами соединенного с входами соответственно детандера и компрессора турбодетандерного агрегата, выходы которых соединены с входами передачи холода потоку СПГ теплообменника переохлаждения и второго компрессора азотного цикла соответственно, выход последнего из которых соединен с последовательно соединенными пятым воздушным охладителем, первым компрессором азотного цикла и четвертым воздушным охладителем, выход которого предназначен для подачи потока азота высокого давления на другой вход теплообменника азотного цикла.

Документы, цитированные в отчете о поиске Патент 2015 года RU2538192C1

СПОСОБ СЖИЖЕНИЯ ГАЗА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Самсонов Роман Олегович
  • Козлов Сергей Иванович
  • Изотов Николай Иванович
  • Котов Павел Борисович
  • Мещерин Игорь Викторович
  • Журавлев Дмитрий Витальевич
RU2344360C1
УСТАНОВКА И СПОСОБ ДЛЯ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА 2006
  • Бёйс Корнелис
  • Клейн Нагелворт Роберт
RU2395765C2
СПОСОБ СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Дьюбар Кристофер Альфред
RU2137066C1

RU 2 538 192 C1

Авторы

Мамаев Анатолий Владимирович

Сиротин Сергей Алексеевич

Копша Дмитрий Петрович

Бахметьев Андрей Петрович

Ишмурзин Айрат Вильсурович

Лебедев Юрий Владимирович

Новиков Денис Вячеславович

Афанасьев Игорь Павлович

Ходаковский Виталий Александрович

Даты

2015-01-10Публикация

2013-11-07Подача