СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДОЖИГА ПРОПАНА НА СТЕКЛОВОЛОКНИСТОМ НОСИТЕЛЕ Российский патент 2015 года по МПК B01J37/02 B01J37/08 B01J21/06 B01J21/08 B01J23/75 B01J35/06 

Описание патента на изобретение RU2538206C1

Изобретение относится к области каталитической химии и может быть использовано при очистке промышленных газовых выбросов и выбросов автотранспорта от углеводородов.

Известен способ получения термически стабильного катализатора полного окисления углеводородов и моноокиси углерода (Патент РФ №2404854, B01J 23/00, 37/03, 37/04, опубл. 27.11.2010 г.), включающий получение катализатора общей формулы MeO·xSnO2 (где Me=Zn2+, Cu2+, Mn2+, Со2+, Ni2+, Pb2+, Cd2+, x=1-5) или Me2O3·xSnO2 (где Ме2=Fe3+, Ce3+, La3+, Cr3+, x=2-10) внесением в α-Sn(OH)4 легкоразлагаемых солей металлов (нитраты, ацетаты) или совместным соосаждением раствора, содержащего SnCl4 и соль металла (нитраты, хлориды, ацетаты, сульфаты), раствором аммиака или щелочи с последующей термической обработкой. Предлагаемый катализатор является активным при низкой температуре, характеризуется термической стабильностью, однако его недостатками являются многостадийность в приготовлении (включая гранулирование), эффективность работы только в стехиометрических углеводород-кислородных смесях, что не поддерживается при осуществлении процесса дожига углеводородов. Кроме того, неподвижный слой гранулированного катализатора характеризуется большим гидродинамическим сопротивлением при высоких скоростях подачи газовоздушной смеси, что увеличивает продолжительность каталитического процесса.

Известен катализатор для глубокого окисления углеводородов и оксида углерода и способ его получения (Патент РФ №2059427, B01J 23/75, 37/04, 101:32, опубл. 10.05.1996 г.). Предлагаемое изобретение предусматривает использование в качестве основного компонента носителя порошкообразного алюминия. В состав шихты, используемой для получения катализатора, входит нерастворимое или малорастворимое соединение кобальта. Получаемый катализатор, представляющий собой гранулированный композит на основе оксидов Co3O4, Al2O3 и порошкообразного алюминия, характеризуется высокой скоростью окисления углеводородов без выделения оксидов азота. К недостаткам катализатора следует отнести сложность, энергоемкость процесса его приготовления, невысокую термическую устойчивость, а также неустойчивость в реакционной среде оксида кобальта(II, III), что возможно устранить при использовании катализаторов на основе смешанных, например, Ti-Co систем.

В качестве прототипа выбран способ приготовления катализатора селективного эпоксидирования стирола (Selective epoxidation of styrene with air over Co3O4-МОх и CoOx-MOx/SiO2 / X.-H. Lu [et al.] // Indian Journal of chemistry. - 2010. - V.49 A. - P.1586-1592). Способ включает в себя приготовление водного раствора соли Со(NO3)2·6H2O, погружение в него порошкообразных, TiO2 и SiO2, ультразвуковое перемешивание полученной суспензии в течение нескольких часов с последующим выпариванием растворителя (80°С), сушкой (80°С, 4 ч) и отжигом (550°С, 4 ч) композиций. Катализатор, полученный описанным способом, характеризуется достаточно высокой активностью при температуре 100°С в процессе эпоксидирования стирола (конверсия стирола составила 76,7%, селективность процесса 80,6%).

Недостатком описанного способа приготовления катализатора является то, что при нанесении суспензии активного компонента на оксидный носитель существуют ограничения, обусловленные объемом пор носителя. Как результат, невозможно получить катализатор с необходимой концентрацией активного компонента. Кроме того, способ-прототип получения катализатора характеризуется многостадийностью и энергоемкостью, а получаемый продукт требует дополнительной очистки.

Перед авторами ставилась задача разработки способа получения газопроницаемого катализатора дожига (с конверсией по пропану до 100% при температуре до 500°), отличающегося простотой реализации и невысокой энергоемкостью.

Для решения поставленной задачи предложен способ получения катализатора дожига пропана на основе оксидов титана, кремния и кобальта золь-гель методом. В отличие от прототипа катализатор получают пропиткой стекловолокнистого носителя спиртовым пленкообразующим раствором и его ступенчатой термической обработкой - при 60°С в течение 30-40 мин и при 700°С в течение 1 ч. Пленкообразующий раствор готовят путем созревания при температуре 20-22°С в течение 4-5 суток свежеприготовленного раствора на основе н-бутилового спирта, тетра-н-бутоксида титана, тетраэтоксисилана, гексагидрата хлорида кобальта(II), дистиллированной воды и соляной кислоты. Для получения катализатора использовали растворы при следующем соотношении компонентов, мас.%:

тетра-н-бутоксид титана от 4,09 до 4,13 тетраэтоксисилан от 0 до 1,49 гексагидрат хлорида кобальта(II) от 2,15 до 3,41 соляная кислота 0,27 дистиллированная вода от 0,56 до 1,04 н-бутиловый спирт остальное

Каталитические свойства катализатора исследовали на проточной установке в интервале температур 50-500°С. Объемная скорость подачи газовоздушной смеси, содержащей 0,08% пропана, составляла 1,5 л/ч. Анализ состава исходной и конечной реакционных смесей проводили в режиме «on-line» с помощью ИК Фурье спектрометра FTIR 8300 (Shimadzu). Конверсию пропана определяли по интенсивности пика в области 2965 см-1.

Для осуществления способа использовали катализатор, сформированный в виде гибких, проницаемых для потока газовоздушной смеси, стекловолокнистых структур, выполненных в виде тканых материалов. Такое структурирование упрощает размещение и закрепление слоя катализатора в каталитическом реакторе и препятствует уносу микроволокон катализатора с газовоздушным потоком. При этом также обеспечивается механическая стабильность слоя катализатора, позволяющая создавать различные типы слоев катализатора (аксиальный, радиальный и др.) и располагать каталитический реактор в любой геометрической ориентации, что существенно повышает технологичность и расширяет возможности применения способа.

Установлено, что наибольшей активностью в процессе каталитического дожига пропана обладает катализатор состава, мол.%: 70 TiO2, 10 SiO2, 20 Co3O4 и 80 TiO2, 20 Co3O4 (рисунок 1).

Катализатор на основе тонкопленочной системы состава, мол.%: 80 TiO2, 20 Co3O4 - проявляет заметную активность уже при 125°С -конверсия продуваемого через него пропана достигает 17,5%, что примерно в 4 раза выше соответствующих показателей оксидных пленок системы TiO2-SiO2-Co3O4 при этой температуре. Однако максимальное значение конверсии пропана (86%) на этом катализаторе достигается при 475°С, в то время как каталитическая активность тонкопленочного катализатора состава, мол.%: 70 TiO2, 10 SiO2, 20 Co3O4 - становится заметной уже при 425°С, а при 475°С подаваемый газ полностью сгорает в реакционной ячейке. Реакционная способность пленок состава, мол.%: 50 TiO2, 30 SiO2, 20 Co3O4 - относительно невысока - конверсия пропана едва достигает 37% при 500°С.

Известно, что диоксид титана со структурой анатаза широко применяется в процессах фотокаталитического окисления органических примесей в воздухе и воде, а также в качестве носителя гетерогенных катализаторов защиты окружающей среды от оксидов азота и углерода. Согласно данным рентгенофазового анализа (таблица 1), среди исследуемых систем только система состава, мол.%: 70 TiO2, 10 SiO2, 20 Co3O4 - характеризуется относительно высоким содержанием нанокристаллического анатаза и отсутствием рутильной модификации TiO2.

Более равномерному распределению каталитически активной фазы и повышению адгезии пленок к поверхности стекловолокнистого носителя способствует входящий в состав пленок диоксид кремния, ввиду чего пленка состава, мол.%: 80 TiO2, 20 Co3O4 - только частично обволакивает поверхность стекловолокна (рисунок 2а), а пленка состава, мол.%: 30 TiO2, 30 SiO2, 20 Co3O4 - достаточно прочно закрепляется на поверхности носителя (рисунок 2b).

Изобретение иллюстрируется следующими примерами:

Пример 1.

Для приготовления катализатора необходимо приготовить пленкообразующий раствор объемом 100 мл. Для этого необходимо смешать 0,5 мл дистиллированной воды (1,04 мас.%), 0,5 мл концентрированной соляной кислоты плотностью ρ=1,19 г/мл (0,27 мас.%) и н-бутиловый спирт объемом 94,7 мл. Затем необходимо растворить в полученном растворе 1,7840 г гексагидрата хлорида кобальта(II) (2,15 мас.%), после чего ввести в раствор 3,5 мл тетра-н-бутоксида титана (4,13 мас.%). После приготовления раствор должен быть выдержан при температуре 20-22°С в течение 4-5 суток для приобретения пленкообразующих свойств. Затем стекловолокнистый носитель (структурированный в виде материала, тканого из нитей диаметром 1 мм) погружают в пленкообразующий раствор на несколько минут для пропитки, дают возможность стечь излишкам раствора, сушат при 60°С в течение 30-40 минут и отжигают при 700°С в течение 1 часа. При этом получается катализатор состава, мол.%: 80 TiO2, 20 Co3O4, - обеспечивающий конверсию пропана в процессе его дожига на уровне 86% при 475°С и объемной скорости подачи газовоздушной смеси 1,5 л/ч. Основным продуктом процесса каталитического дожига пропана является углекислый газ, угарный газ образуется в следовых количествах.

Пример 2.

Для приготовления катализатора необходимо приготовить пленкообразующий раствор объемом 100 мл. Для этого необходимо смешать 0,5 мл дистиллированной воды (1,04 мас.%), 0,5 мл концентрированной соляной кислоты плотностью ρ=1,19 г/мл (0,27 мас.%) и н-бутиловый спирт объемом 94,3 мл. Затем необходимо растворить в полученном растворе 2,0410 г гексагидрата хлорида кобальта(II) (2,45 мас.%), после чего ввести в раствор 3,5 мл тетра-н-бутоксида титана (4,12 мас.%) и 0,32 мл тетраэтоксисилана (0,36 мас.%). После приготовления раствор должен быть выдержан при температуре 20-22°С в течение 4-5 суток для приобретения пленкообразующих свойств. Затем стекловолокнистый носитель (структурированный в виде материала, тканого из нитей диаметром 1 мм) погружают в пленкообразующий раствор на несколько минут для пропитки, дают возможность стечь излишкам раствора, сушат при 60°С в течение 30-40 минут и отжигают при 700°С в течение 1 часа. При этом получается катализатор состава, мол.%: 70 TiO2, 10 SiO2, 20 Co3O4, - обеспечивающий полную конверсию пропана в процессе его дожига при 475°С и объемной скорости подачи газовоздушной смеси 1,5 л/ч. Продуктом процесса каталитического дожига пропана является только углекислый газ.

Пример 3.

Для приготовления катализатора необходимо приготовить пленкообразующий раствор объемом 100 мл. Для этого необходимо смешать 0,1 мл дистиллированной воды (0,56 мас.%), 0,5 мл концентрированной соляной кислоты плотностью ρ=1,19 г/мл (0,27 мас.%) и н-бутиловый спирт объемом 93,3 мл. Затем необходимо растворить в полученном растворе 2,8550 г гексагидрата хлорида кобальта(II) (3,41 мас.%), после чего ввести в раствор 3,5 мл тетра-н-бутоксида титана (4,09 мас.%) и 1,35 мл тетраэтоксисилана (1,49 мас.%). После приготовления раствор должен быть выдержан при температуре 20-22°С в течение 4-5 суток для приобретения пленкообразующих свойств. Затем стекловолокнистый носитель (структурированный в виде материала, тканого из нитей диаметром 1 мм) погружают в пленкообразующий раствор на несколько минут для пропитки, дают возможность стечь излишкам раствора, сушат при 60°С в течение 30-40 минут и отжигают при 700°С в течение 1 часа. При этом получается катализатор состава, мол.%: 50 TiO2, 30 SiO2, 20 Co3O4, - обеспечивающий конверсию пропана в процессе его дожига на уровне 37% при 500°С и объемной скорости подачи газовоздушной смеси 1,5 л/ч. Продуктом процесса каталитического дожига пропана является только углекислый газ.

Похожие патенты RU2538206C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО КАТАЛИТИЧЕСКОГО МАТЕРИАЛА В ВИДЕ СЛОИСТЫХ ПОЛЫХ СФЕР 2015
  • Паукштис Евгений Александрович
  • Козик Владимир Васильевич
  • Бричков Антон Сергеевич
  • Шамсутдинова Анастасия Нафисовна
  • Ларина Татьяна Викторовна
  • Жаркова Валентина Викторовна
  • Бобкова Людмила Александровна
RU2608125C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА В ВИДЕ КОМПОЗИЦИОННОГО МАТЕРИАЛА С РАСПРЕДЕЛЕННЫМИ СФЕРИЧЕСКИМИ ПОЛЫМИ ЧАСТИЦАМИ 2018
  • Рогачева Анастасия Олеговна
  • Бричков Антон Сергеевич
  • Паукштис Евгений Александрович
  • Пармон Валентин Николаевич
  • Козик Владимир Васильевич
RU2687265C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОГО КАТАЛИТИЧЕСКОГО МАТЕРИАЛА В ВИДЕ ПОЛЫХ СФЕР С ИСПОЛЬЗОВАНИЕМ МИКРОВОЛН 2022
  • Халипова Ольга Сергеевна
  • Кузнецова Светлана Анатольевна
RU2792611C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА НА ОСНОВЕ CeO-SnО НА СТЕКЛОТКАННОМ НОСИТЕЛЕ 2014
  • Кузнецова Светлана Анатольевна
  • Козик Владимир Васильевич
  • Галанов Сергей Иванович
  • Халипова Ольга Сергеевна
RU2554943C1
КАТАЛИЗАТОРЫ 2012
  • Дейли Фрэнсис
  • Ричард Лора
  • Ругмини Срикала
RU2603136C2
КОБАЛЬТОВЫЙ НАНОКАТАЛИЗАТОР СИНТЕЗА ФИШЕРА-ТРОПША, ЛОКАЛИЗОВАННЫЙ В ПОРИСТОМ МАТЕРИАЛЕ, И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Фанг Жангджиан
  • Чен Йилонг
  • Жанг Янфенг
  • Жан Ксиаодонг
  • Ксуе Йонгджие
  • Тао Леиминг
RU2624441C2
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКНИСТОГО ФИЛЬТРУЮЩЕ-СОРБИРУЮЩЕГО МАТЕРИАЛА С ПОКРЫТИЕМ ИЗ НАНОРАЗМЕРНОГО ДИОКСИДА ТИТАНА И ВОЛОКНИСТО ФИЛЬТРУЮЩЕ-СОРБИРУЮЩИЙ МАТЕРИАЛ 2023
  • Бузаев Александр Александрович
  • Ткачук Валерия Андреевна
  • Спивакова Лариса Николаевна
  • Борило Людмила Павловна
RU2824859C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) И СПОСОБ ГИДРОДЕОКСИГЕНАЦИИ ЖИРНЫХ КИСЛОТ, ИХ ЭФИРОВ И ТРИГЛИЦЕРИДОВ 2007
  • Яковлев Вадим Анатольевич
  • Лебедев Максим Юрьевич
  • Ермаков Дмитрий Юрьевич
  • Хромова Софья Александровна
  • Новопашина Вера Михайловна
  • Кириллов Валерий Александрович
  • Пармон Валентин Николаевич
  • Систер Владимир Григорьевич
RU2356629C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) И ПРОЦЕСС ГИДРОДЕОКСИГЕНАЦИИ КИСЛОРОДОРГАНИЧЕСКИХ ПРОДУКТОВ БЫСТРОГО ПИРОЛИЗА БИОМАССЫ 2007
  • Яковлев Вадим Анатольевич
  • Хромова Софья Александровна
  • Ермаков Дмитрий Юрьевич
  • Лебедев Максим Юрьевич
  • Кириллов Валерий Александрович
  • Пармон Валентин Николаевич
RU2335340C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПОРИСТОГО НАНОРАЗМЕРНОГО ПОКРЫТИЯ 2011
  • Козик Владимир Васильевич
  • Иванов Владимир Константинович
  • Борило Людмила Павловна
  • Бричкова Виктория Юрьевна
  • Бричков Антон Сергеевич
  • Заболотская Анастасия Владимировна
RU2464106C1

Иллюстрации к изобретению RU 2 538 206 C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДОЖИГА ПРОПАНА НА СТЕКЛОВОЛОКНИСТОМ НОСИТЕЛЕ

Изобретение относится к области каталитической химии и может быть использовано при очистке промышленных газовых выбросов и выбросов автотранспорта от углеводородов. Катализатор получают пропиткой стекловолокнистого носителя (структурированного в виде материала, тканого из нитей диаметром 1 мм) пленкообразующим раствором, созревание которого осуществляется при температуре 20-22°С в течение 4-5 суток, и его последующей ступенчатой термической обработкой - при 60°С в течение 30-40 минут и при 700°С в течение 1 часа, при следующем соотношении компонентов исходного раствора, мас.%: тетра-н-бутоксид титана от 4,09 до 4,13, тетраэтоксисилан от 0 до 1,49, гексагидрат хлорида кобальта(II) от 2,15 до 3,41, соляная кислота 0,27, дистиллированная вода от 0,56 до 1,04, н-бутиловый спирт остальное. 1 табл., 2 ил., 3 пр.

Формула изобретения RU 2 538 206 C1

Способ получения катализатора дожига пропана на стекловолокнистом носителе на основе оксидов титана, кремния и кобальта, отличающийся тем, что катализатор получают пропиткой стекловолокнистого носителя (структурированного в виде материала, тканого из нитей диаметром 1 мм) пленкообразующим раствором, созревание которого осуществлялось при температуре 20-22°С в течение 4-5 суток, и его последующей ступенчатой термической обработкой - при 60°С в течение 30-40 минут и при 700°С в течение 1 часа, при следующем соотношении компонентов исходного раствора, мас.%:
тетра-н-бутоксид титана от 4,09 до 4,13 тетраэтоксисилан от 0 до 1,49 гексагидрат хлорида кобальта(II) от 2,15 до 3,41 соляная кислота 0,27 дистиллированная вода от 0,56 до 1,04 н-бутиловый спирт остальное

Документы, цитированные в отчете о поиске Патент 2015 года RU2538206C1

X-H LU ET AL., Selective epoxidation of styrene with air over Co3O4-MOx and CoOx-MOx/SiO2, Indian Journal of Chemistry, 2010, v.49A, p.p.1586-1592
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПОРИСТОГО НАНОРАЗМЕРНОГО ПОКРЫТИЯ 2011
  • Козик Владимир Васильевич
  • Иванов Владимир Константинович
  • Борило Людмила Павловна
  • Бричкова Виктория Юрьевна
  • Бричков Антон Сергеевич
  • Заболотская Анастасия Владимировна
RU2464106C1
Бричков А.С
И ДР., Анализ температурной зависимости энергетического состояния твердофазных систем на основе тетраэтоксисилана и солей d-металлов, Ползуновский вестник, 2010, N3, стр.73-77
RU 2059427 C1, 10.05.1996
US 0006071849 A1, 06.06.2000

RU 2 538 206 C1

Авторы

Бричков Антон Сергеевич

Бричкова Виктория Юрьевна

Козик Владимир Васильевич

Паукштис Евгений Александрович

Пармон Валентин Николаевич

Даты

2015-01-10Публикация

2013-11-27Подача