СПОСОБ ПОЛУЧЕНИЯ ПЛАТИНУСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА НАНОУГЛЕРОДНЫХ НОСИТЕЛЯХ Российский патент 2015 года по МПК B01J23/42 B01J37/06 B01J37/08 B01J37/16 B82B3/00 

Описание патента на изобретение RU2538959C2

Предложение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов используют платинусодержащие углеродные материалы.

Известен способ нанесения платины на углеродный материал методом пропитки, который включает в себя осаждение на углеродную поверхность и восстановление прекурсора - гидрата платинохлористоводородной кислоты (H2PtCl6 H2O) - с помощью сильных восстановителей (H2N4, формальдегида - CH2O+H2O, NaBH4) или одновременное добавление щелочного и восстанавливающего агента (NaOH+HOCH2CH2OH) [Герасимова Е.В., Тарасова Б.П. Платина на углеродных носителях - катализатор процессовы в низкотемпературных топливных элементах. Альтернативная энергетика и экология. 2009. №8. С.78].

Существенным недостатком этого способа является полидисперсность получаемых частиц платины по размерам, что неизбежно сказывается на каталитических свойствах данных материалов. Кроме того, присущая этому способу трудоемкость обработки соответствующего углеродного носителя - Vulkan XC-72 (сначала 4 часовое кипячение в 70% азотной кислоте при температуре 160°C, затем 4-часовое кипячение в смеси азотной и серной кислот).

Наиболее близким по сущности и достигаемому результату является способ получения Pt на угле (Pt/C), в котором используются восстановительные свойства этиленгликоля в щелочной среде [Wanzhen Li, Changhai Liang, Weijiang Zhou, Jieshan Qiu, Zhenhua Zhou, Gonghuan Sun and Qin Hi. Preparation and Characterization of Multiwalled Carbon nanotube supported for cathode catalyze of direct methanol fuel cells, 20% Pt. // J. Phys. Chem. B.V. 26 P.6292-6299].

Сущность прототипа состоит в следующем: для восстановления прекурсора используется этиленгликоль в щелочной среде (рН ≈ 10-12) при нагревании до 160°C в течение 3-5 часов в атмосфере аргона.

Существенными недостатками прототипа являются неоднородность поверхности катализатора, связанная с агрегацией образующихся платинусодержащих наночастиц, что снижает каталитическую активность данных материалов, и длительная трудоемкая процедура обработки углеродного носителя - Vulkan XC-72 (сначала 4-часовое кипячение в 70% азотной кислоте при температуре 160°C, затем 4-часовое кипячение в смеси азотной и серной кислот).

Технической задачей и положительным результатом разработанного заявителями способа является то, что за счет добавления полиэтиленгликоля (препятствующего агрегации образующихся наночастиц Pt/C) способ позволяет получить катализатор с более монодисперсным и регулируемым распределением наночастиц платины по размеру, который во многом определяет каталитическую активность наночастиц платины и эффективность катализатора в целом. Кроме того, способ приводит к экономии электроэнергии и трудовых затрат, а также к удешевлению получаемых катализаторов.

Указанная задача и технический результат достигаются в способе получения Pt-содержащих катализаторов, включающем обработку наноуглеродного компонента с помощью платинохлористовододродной кислоты с последующим восстановлением последней этиленгликолем в щелочной среде, при этом углеродные наночастицы предварительно подвергают функциализации кипячением в концентрированной азотной кислоте, промывают после этого дистиллированной водой до нейтрального pH, высушивают в вакууме при температуре 40°C, после чего углеродные наночастицы помещают в колбу, содержащую дистиллированную воду и платинохлористоводородную кислоту, добавляют этиленгликоль и двухнормальный раствор NaOH до pH ≈ 12-14, смесь перемешивают в ультразвуковой бане, затем нагревают до 140-150°C при непрерывном перемешивании этой смеси в токе аргона, затем добавляют полиэтиленгликоль с молекулярной массой ММ ≈ 40000, после этого смесь охлаждают до комнатной температуры, помещают в центрифугу и промывают дистиллированной водой до нейтрального pH с последующей сушкой в вакууме при 40°C до постоянного веса. Способ характеризуется тем, что на 100 мг углеродного продукта с размером частиц 8-10 нм берут 5 мл дистиллированной воды, 160 мг платинохлористоводородной кислоты, 10 мл двухнормальной щелочи NaOH. Способ характеризуется также тем, что полиэтиленгликоль вводят в состав смеси в количестке 20 мг. Способ раскрывается на примере его осуществления.

Пример. 100 мг наноуглеродного компонента типа «Таунит М» (размер частиц ~ 8-10 нм), предварительно функциализированного кипячением в течение 5 минут в коцентрированной азотной кислоте, промытого до нейтрального pH дистиллированной водой и тщательно высушенного в вакууме при 40°C, поместили в 3-горлую колбу на 100 мл, залили 5 мл дист. воды, добавили 160 мг H2PtCl6, 10 мл этиленгликоля и 7.5 мл двухнормального NaOH (pH ≈ 12-14). Смесь перемешивали в ультразвуковой бане 15 минут, после чего нагревали при перемешивании механической мешалкой в токе аргона в течение 1.5 часов до 140-150°C. После этого в колбу добавляют 20 мг полиэтиленгликоля с молекулярной массой ММ ≈ 40000. После охлаждения до комнатной температуры смесь помещали в центрифугу для отделения осадка и промывали дистиллированной водой до нейтрального pH. Осадок сушили в вакууме при 40°C до постоянного веса. Содержание Pt в полученном наноуглеродном продукте составляло 20% вес.

По данным электронного микроскопа марки SUPRA 55VP 32-49 размер наночастиц платины составил 2-4 нм.

Эффективность полученного катализатора была проверена с помощью мембранно-электродного блока (МЭБ), схема которого представлена на фиг.1. Средняя загрузка платины на электродах составляла 1.30±0.05 мг/см2 для всех образцов. Активная площадь электродов составляла 1.00±0.05 см2.

На фиг.2 представлены поляризационные (вольтамперные) характеристики соответствующих МЭБ в составе ВВТЭ (E-Tek - известный катализатор [Philippe S., Jose Luis Figueiredo. Carbon Materials for Catalysis. John Wiley and Sons. P.324, 444, 579]; TaunitM - катализатор, разработанный заявителями на носителе «Таунит М» с предварительной обработкой в азотной кислоте). Измерения проводились при комнатной температуре, при подаче на анод сухого водорода и на катод сухого воздуха.

На фиг.3 представлены мощностные характеристики МЭБ. Максимальная мощность МЭБ с использованием разработанного катализатора составила 122 мВт, в то время как катализатор E-Tek показал максимальную мощность 109 мВт.

Таким образом, созданный по заявленному способу платинусодержащий катализатор на наноуглеродном носителе по свойствам и эффективности превосходит известный базовый катализатор; при этом достигается сокращение энерго- и трудозатрат на процессе получения платинусодержащего катализатора на наноуглеродном носителе.

Похожие патенты RU2538959C2

название год авторы номер документа
СПОСОБ ПРИГОТОВЛЕНИЯ ПЛАТИНОВЫХ КАТАЛИЗАТОРОВ 2009
  • Воропаев Иван Николаевич
  • Симонов Павел Анатольевич
  • Романенко Анатолий Владимирович
  • Собянин Владимир Александрович
  • Бухтияров Валерий Иванович
RU2415707C2
СПОСОБ ПРИГОТОВЛЕНИЯ МЕМБРАН-ЭЛЕКТРОДНЫХ БЛОКОВ 2013
  • Грибов Евгений Николаевич
  • Окунев Алексей Григорьевич
RU2563029C2
СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИТИЧЕСКОГО ЭЛЕКТРОДА НА ОСНОВЕ ГЕТЕРОПОЛИСОЕДИНЕНИЙ ДЛЯ ВОДОРОДНЫХ И МЕТАНОЛЬНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ 2012
  • Фролова Любовь Анатольевна
  • Добровольский Юрий Анатольевич
RU2561711C2
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ПЛАТИНЫ (IV) НА ПОВЕРХНОСТИ НОСИТЕЛЯ 2014
  • Мулагалеев Руслан Фаатович
RU2554356C1
Способ получения наноструктурированных платиноуглеродных катализаторов 2017
  • Новикова Ксения Сергеевна
  • Герасимова Екатерина Владимировна
  • Добровольский Юрий Анатольевич
  • Смирнова Нина Владимировна
RU2660900C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПЛАТИНОНИКЕЛЕВОГО КАТАЛИЗАТОРА 2010
  • Лютикова Елена Константиновна
  • Акелькина Светлана Владимировна
  • Серегина Екатерина Алексеевна
RU2421850C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ С НАНЕСЁННЫМ ДИОКСИДОМ КРЕМНИЯ 2012
  • Чесноков Владимир Викторович
  • Пармон Валентин Николаевич
  • Чичкань Александра Сергеевна
RU2516409C2
СПОСОБ ИЗГОТОВЛЕНИЯ МЕТАЛЛ-ОКСИДНОГО КАТАЛИТИЧЕСКОГО ЭЛЕКТРОДА ДЛЯ НИЗКОТЕМПЕРАТУРНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ 2012
  • Фролова Любовь Анатольевна
  • Добровольский Юрий Анатольевич
RU2522979C2
КАТАЛИЗАТОР ДЛЯ ОКИСЛИТЕЛЬНОГО РАЗЛОЖЕНИЯ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ГАЗАХ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Кучеров Алексей Викторович
  • Кириченко Ольга Алексеевна
  • Кустов Леонид Модестович
RU2488441C1
СПОСОБ ФОРМИРОВАНИЯ КАТАЛИТИЧЕСКОГО СЛОЯ ТВЕРДОПОЛИМЕРНОГО ТОПЛИВНОГО ЭЛЕМЕНТА 2011
  • Глебова Надежда Викторовна
  • Нечитайлов Андрей Алексеевич
  • Томасов Александр Александрович
  • Терукова Екатерина Евгеньевна
  • Филиппов Александр Константинович
RU2456717C1

Иллюстрации к изобретению RU 2 538 959 C2

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ ПЛАТИНУСОДЕРЖАЩИХ КАТАЛИЗАТОРОВ НА НАНОУГЛЕРОДНЫХ НОСИТЕЛЯХ

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на наноуглеродных носителях включает обработку наноуглеродного компонента с помощью платинохлористоводородной кислоты с последующим восстановлением последней этиленгликолем в щелочной среде, при этом углеродные наночастицы предварительно подвергают функциализации кипячением в концентрированной азотной кислоте, промывают после этого дистиллированной водой до нейтрального pH, высушивают в вакууме при температуре 40°C, после чего углеродные наночастицы помещают в колбу, содержащую дистиллированную воду и платинохлористоводородную кислоту, добавляют этиленгликоль и двухнормальный раствор NaOH до pH ≈ 12-14, смесь перемешивают в ультразвуковой бане, затем нагревают до 140-150°C при непрерывном перемешивании этой смеси в токе аргона, затем добавляют полиэтиленгликоль с молекулярной массой MM ~ 40000, после этого смесь охдаждают до комнатной температуры, помещают в центрифугу и промывают дистиллированной водой до нейтрального рН с последующей сушкой в вакууме при 40°C до постоянного веса. Технический результат заключается в получении катализатора с более монодисперсным и регулируемым распределением наночастиц платины по размеру, что приводит к экономии электроэнергии, трудовых затрат и к удешевлению получаемых катализаторов. 3 ил., 1 пр.

Формула изобретения RU 2 538 959 C2

1. Способ получения платинусодержащих катализаторов на наноуглеродных носителях, включающий обработку наноуглеродного компонента с помощью платинохлористоводородной кислоты с последующим восстановлением последней этиленгликолем в щелочной среде, отличающийся тем, что углеродные наночастицы предварительно подвергают функциализации кипячением в концентрированной азотной кислоте, промывают после этого дистиллированной водой до нейтрального pH, высушивают в вакууме при температуре 40°C, после чего углеродные наночастицы помещают в колбу, содержащую дистиллированную воду и платинохлористоводородную кислоту, добавляют этиленгликоль и двухнормальный раствор NaOH до pH ≈ 12-14, смесь перемешивают в ультразвуковой бане, затем нагревают до 140-150°C при непрерывном перемешивании этой смеси в токе аргона, затем добавляют полиэтиленгликоль с молекулярной массой MM ~ 40000, после этого смесь охлаждают до комнатной температуры, помещают в центрифугу и промывают дистиллированной водой до нейтрального рН с последующей сушкой в вакууме при 40°C до постоянного веса.

2. Способ по п.1 отличающийся тем, что на 100 мг углеродного продукта с размером частиц 8-10 нм берут 5 мл дистиллированной воды, 160 мг платинохлористоводородной кислоты, 10 мл этиленгликоля и 7,5 мл двухнормальной щелочи NaOH.

3. Способ по п.2 отличающийся тем, что полиэтиленгликоль вводят в состав смеси в количестве 20 мг.

Документы, цитированные в отчете о поиске Патент 2015 года RU2538959C2

WENZHEN LI ET AL., Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells, J
Phys
Chem
B, 2003, 107, 6292-6299
СПОСОБ ПРИГОТОВЛЕНИЯ ПЛАТИНОВЫХ КАТАЛИЗАТОРОВ 2009
  • Воропаев Иван Николаевич
  • Симонов Павел Анатольевич
  • Романенко Анатолий Владимирович
  • Собянин Владимир Александрович
  • Бухтияров Валерий Иванович
RU2415707C2
Г.К
Борескова Сибирского отделения РАН), 10.04.2011
US 20110065025 A1, 17.03.2011

RU 2 538 959 C2

Авторы

Надеждина Лидия Борисовна

Шаманин Валерий Владимирович

Сапрыкина Наталья Николаевна

Терукова Екатерина Евгеньевна

Кошкина Дарья Владимировна

Теруков Евгений Иванович

Ткачев Алексей Григорьевич

Даты

2015-01-10Публикация

2013-04-10Подача